




## Las Vegas Valley NPDES Municipal Stormwater Discharge Permit

Annual Report 2023-2024

November **2024** 

















November 1, 2024

Steven C. Parrish, P.E. General Manager/Chief Engineer

BOARD OF DIRECTORS

Commissioner Justin Jones Chair Clark County

Councilman Isaac Barron Vice-Chair City of North Las Vegas

Mayor Carolyn Goodman City of Las Vegas

> Mayor Joe Hardy City of Boulder City

Mayor Pro Tem Brian Knudsen City of Las Vegas

Commissioner Tick Segerblom Clark County

Councilman Dan Shaw City of Henderson

Councilman Paul Wanlass City of Mesquite Kristie Black Bureau of Water Pollution Control Nevada Division of Environmental Protection 901 S. Stewart Street, Suite 4001 Carson City NV 89701

#### RE: 2023 – 2024 Annual Report-Las Vegas Valley NPDES MS4 Permit

Dear Ms. Black:

Please find enclosed a copy of the 2023-2024 Annual Report for the Las Vegas Valley National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Permit (NV0021911). This report was prepared in cooperation with Brown and Caldwell and HDR, Inc. and is hereby submitted for your review. The Annual Report details compliance activities for the period from July 1, 2023, through June 30, 2024. These activities were performed in accordance with Permit No. NV0021911 and the approved Stormwater Management Plan.

If you should have any questions, please do not hesitate to call.

Sincerely,

ARTI

Andrew R. Trelease, P.E., CFM Assistant General Manager

Enclosure

2023-2024 Annual Report

Las Vegas Valley National Pollutant Discharge Elimination System Municipal Separate Storm Sewer System Permit

Prepared for:

Las Vegas Valley Stormwater Quality Management Committee (SQMC)

Clark County Regional Flood Control District City of Henderson City of Las Vegas City of North Las Vegas Clark County

Prepared by:



November, 2024



#### LAS VEGAS VALLEY NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM MUNICIPAL SEPARATE STORM SEWER SYSTEM PERMIT

#### **Table of Contents**

| E | хесι | utive Summary                                                               | ES-1 |
|---|------|-----------------------------------------------------------------------------|------|
|   | 1    | Introduction                                                                | ES-1 |
|   | 2    | Area of Coverage                                                            | ES-1 |
|   | 3    | Water Quality Standards                                                     | ES-1 |
|   | 4    | Legal Authority                                                             | ES-1 |
|   | 5    | Stormwater Management Approach                                              | ES-2 |
|   | 6    | Source Identification                                                       | ES-2 |
|   | 7    | Stormwater Monitoring Program                                               |      |
|   | 8    | Public Outreach and Education Program                                       | ES-2 |
|   | 9    | Source Control and MS4 Maintenance Program                                  |      |
|   | 10   | Post-Construction Program for New Development and Significant Redevelopment |      |
|   | 11   | Illicit Discharge Detection and Elimination Program                         |      |
|   | 12   | Industrial Facility Monitoring and Control Program                          |      |
|   | 13   | Construction Site Program                                                   |      |
|   | 14   | Staff and Resources                                                         |      |
|   | 15   | Characterization Data                                                       |      |
|   | 16   | Conclusion                                                                  |      |
| 1 | Int  | troduction                                                                  | 1-1  |
|   | 1.1  | Annual Report Organization                                                  | 1-1  |
|   | 1.2  | Permit Coordination                                                         | 1-1  |
| 2 | Ar   | ea of Coverage                                                              | 2-1  |
| 3 | Wa   | ater Quality Standards                                                      | 3-1  |
|   | 3.1  | Impaired Waters in the Las Vegas Valley                                     | 3-1  |
|   | 3.2  | Water Quality Standards                                                     | 3-2  |
|   | 3.3  | Permit Compliance for Constituents with a TMDL                              | 3-2  |
| 4 | Le   | gal Authority                                                               | 4-1  |
|   | 4.1  | Ordinances and Revisions to Ordinances                                      | 4-1  |
|   | 4.2  | Compliance and Enforcement                                                  | 4-2  |
| 5 | Sto  | ormwater Management Approach                                                | 5-1  |
|   | 5.1  | Overview of Best Management Practices                                       | 5-1  |
| 6 | So   | purce Identification                                                        | 6-1  |
| 7 | Sto  | ormwater Monitoring Program                                                 | 7-1  |
|   |      | Wet Weather Monitoring                                                      |      |
|   |      | 7.1.1 Wet Weather Sampling Procedures                                       |      |
|   |      | 7.1.2 Wet Weather Constituents                                              |      |
|   |      | 7.1.3 Wet Weather Monitoring Results                                        | 7-4  |



| 7.1.4           | 2024-2025 Stormwater Monitoring Plan                                   | 7-11  |
|-----------------|------------------------------------------------------------------------|-------|
| 8 Public O      | utreach and Education Program                                          | 8-1   |
|                 | ew of Best Management Practices                                        |       |
|                 | tion of Individual Best Management Practices                           |       |
| 8.2.1           | Storm Drain Marking Program (SC-11)                                    | 8-1   |
| 8.2.2           | Pet Waste Management (SC-17)                                           | 8-2   |
| 8.2.3           | Las Vegas Valley (LVV) Stormwater Quality Website (SC-30)              | 8-3   |
| 8.2.4           | Public Outreach Events (SC-31)                                         | 8-3   |
| 8.2.5           | Elementary School Presentations (SC-32)                                |       |
|                 | 8.2.5.1 FY2024 Clark County Water Quality Grant Funded Public Outreach | า 8-5 |
| 8.2.6           | Public Service Announcements / Flood Channel (SC-33)                   | 8-5   |
| 8.2.7           | Brochures and Printed Material (SC-34)                                 | 8-6   |
| 9 Source C      | Control and MS4 Maintenance Program                                    | 9-1   |
|                 | ew of Best Management Practices                                        |       |
|                 | tion of Individual Best Management Practices                           |       |
| 9.2.1           | Street Sweeping (MM-1)                                                 |       |
| 9.2.2           | Local Storm Drain System Maintenance (MM-2)                            | 9-3   |
| 9.2.3           | Regional Detention Basin Maintenance (MM-3)                            | 9-4   |
| 9.2.4           | Maintenance of Public Facilities (MM-4)                                | 9-5   |
| 9.2.5           | Water Conservation (Drought) Ordinances (SC-1)                         | 9-6   |
| 9.2.6           | Turf Conversion Program (SC-2)                                         | 9-6   |
| 9.2.7           | Public Employee Supervisor Fertilizer / Pesticide Training (SC-3)      | 9-7   |
| 9.2.8           | Use of Alternate Products and Application Procedures (SC-4)            | 9-8   |
| 9.2.9           | Household Hazardous Waste Collection (SC-5)                            | 9-8   |
| 9.2.10          | Ordinances Prohibiting Non-Stormwater Discharges and Littering (SC-7)  | 9-8   |
| 9.2.11          | Desert Dumping Controls (SC-8)                                         | 9-9   |
|                 | Dust Control Measures (SC-10)                                          |       |
| 9.2.13          | Trash Receptacle Enclosures (SC-14)                                    |       |
| 10 Post-Cor     | struction Program for New Development and Significant                  |       |
| Redev           | velopment                                                              |       |
| 10.1 Overvie    | ew of Best Management Practices                                        | 10-1  |
| 10.2 Descrip    | tion of Best Management Practices                                      |       |
| 10.2.1          | Stormwater Outfall Map with Areas of NDSR                              | 10-3  |
| 10.2.2          | Areas of NDSR in Watersheds with Impaired Waterbodies                  | 10-15 |
| 10.2.3          | Water Quality Capture Volume                                           | 10-15 |
| 10.2.4          | Regional Detention Basins (TC-1)                                       | 10-17 |
| 10.2.5          | Regional Channel Lining                                                | 10-19 |
| 10.2.6          | Las Vegas Wash Stabilization Structures (TC-3)                         | 10-19 |
| 10.2.7          | Regional Detention Basin Retrofit (TC-6)                               | 10-19 |
| 11 Illicit Disc | charge Detection and Elimination Program                               |       |
|                 | ew of Best Management Practices                                        |       |
|                 | tion of Individual Best Management Practices                           |       |
|                 | Spill Control Prevention Plan (SC-12)                                  |       |



| 11.2.2 Regional Water Quality Planning (SC-16)                                                                                     | 11-1  |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
| 11.2.3 Sanitary Sewer Line Inspection and Replacement Program (SC-19)                                                              | 11-2  |
| 11.2.4 Storm Channel Inspections (SC-26)                                                                                           | 11-2  |
| 11.2.5 Stormwater-Related Complaint Response (SC-29)                                                                               | 11-3  |
| 12 Industrial Facility Monitoring and Control Program                                                                              | 12-1  |
| 12.1 Overview of Best Management Practices                                                                                         | 12-1  |
| 12.2 Description of Individual Best Management Practices                                                                           | 12-1  |
| 12.2.1 Commercial / Industrial Housekeeping Practices (SC-6)                                                                       |       |
| 12.2.2 Grease Interceptor Program (SC-9)                                                                                           |       |
| 12.2.3 Industrial Pretreatment Program (SC-13)                                                                                     | 12-2  |
| 12.2.4 Southern Nevada Health District Inspections (SC-15)                                                                         | 12-2  |
| 12.2.5 Industrial Facility Stormwater Inspections (SC-23)                                                                          |       |
| 12.2.6 Industrial Facility Stormwater Inventory (SC-24)                                                                            | 12-3  |
| 12.2.6.1 SARA Title III Section 313                                                                                                | 12-3  |
| 12.2.7 Industrial Facility Stormwater Inspection Boundary                                                                          | 12-7  |
| 12.2.8 Municipal Landfills                                                                                                         | 12-9  |
| 12.2.9 Hazardous Waste Treatment, Disposal, and Recovery Facilities                                                                | 12-9  |
| 12.2.10 Other Facilities that Contribute a Substantial Pollutant Load to the MS4                                                   | 12-9  |
| 12.2.11 Industrial Facility Inventory                                                                                              | 12-9  |
| 12.2.12 Industrial Facility Stormwater Inspection Checklist (SC-25)                                                                | 12-14 |
| 12.2.13 Industrial Facility Inspector Training Workshops (SC-28)                                                                   | 12-14 |
| 13 Construction Site Program                                                                                                       | 13-1  |
| 13.1 Overview of Best Management Practices                                                                                         | 13-1  |
| 13.2 Description of Individual Best Management Practices                                                                           | 13-1  |
| 13.2.1 Construction Site BMP Manual (SC-20)                                                                                        |       |
| 13.2.2 Construction Site Inspections (SC-21).                                                                                      |       |
| 13.2.3 Construction Site Training Workshops (SC-22)                                                                                | 13-4  |
| 14 Staff and Resources                                                                                                             |       |
| 14.1 Funding                                                                                                                       | 14-2  |
| 14.2 Staffing                                                                                                                      |       |
| 15 Evaluation of Characterization Data                                                                                             |       |
| 15.1 Background                                                                                                                    |       |
| 5                                                                                                                                  |       |
| 15.1.1 MS4 Stormwater Permit                                                                                                       |       |
| 15.1.2 Clark County and Cities of Hendelson, Las Vegas, and North Las Vegas<br>15.1.3 Clark County Regional Flood Control District |       |
| 15.1.3.1 Origin and Process                                                                                                        |       |
| 15.1.3.2 Detention Basins, Low-Flow Facilities, and Channel Lining                                                                 |       |
| 15.1.4 Erosion Control Structures                                                                                                  |       |
| 15.1.5 Unique Conditions in the Las Vegas Valley                                                                                   |       |
| 15.1.5.1 Climatic Factors                                                                                                          |       |
| 15.1.5.2 Hydrologic Factors                                                                                                        |       |
|                                                                                                                                    |       |



|                | <ul> <li>15.1.5.3 Geologic Factors</li> <li>15.1.5.4 Hydrogeologic Factors</li> <li>15.1.5.5 Watershed and Land Use Factors</li></ul>  | 15-15<br>15-15 |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
|                | <ul><li>15.1.5.6 Legal and Water Rights Factors</li><li>15.1.5.7 Conclusions About Unique Conditions in the Las Vegas Valley</li></ul> |                |  |  |
| 15.1.6         | Wet Weather Monitoring Program.                                                                                                        |                |  |  |
| 15.2 Evaluatio | n of Wet Weather Hydrographs                                                                                                           | . 15-20        |  |  |
| 15.3 Evaluatio | on of Suspended Solids and Turbidity Data                                                                                              | . 15-22        |  |  |
| 15.3.1         | 0                                                                                                                                      |                |  |  |
|                | Comparison of Suspended Solids and Turbidity Data                                                                                      |                |  |  |
|                | Evaluation of Effects of Increasing Flows                                                                                              |                |  |  |
|                | Comparison of Upstream and Downstream Monitoring Points                                                                                |                |  |  |
|                | Comparison of Samples Taken by Location on Hydrograph                                                                                  |                |  |  |
|                | Evaluation of Effects of Extended Intervals of Dry Weather                                                                             |                |  |  |
|                | Comparison of Las Vegas Valley Data with Regional Data                                                                                 | . 15-31        |  |  |
| 15.3.8         | Sensitivity of the Las Vegas Valley and Lake Mead to Suspended Solids and Turbidity                                                    | 15-33          |  |  |
| 15.3.9         | Conclusions about Suspended Solids and Turbidity                                                                                       |                |  |  |
| 15.4 Evaluatio | on of Nutrient Data                                                                                                                    | . 15-34        |  |  |
| 15.4.1         | Significance                                                                                                                           | . 15-34        |  |  |
| 15.4.2         | Sensitivity of Lake Mead and Las Vegas Wash to Nutrients                                                                               | . 15-34        |  |  |
| 15.4.3         | Evaluation of Orthophosphate Data                                                                                                      | . 15-40        |  |  |
| 15.4.4         | Conclusions About Nutrient Data                                                                                                        | . 15-41        |  |  |
| 15.5 Evaluatio | n of Dissolved Metal Data                                                                                                              | . 15-41        |  |  |
| 15.5.1         | Significance                                                                                                                           | . 15-41        |  |  |
|                | Evaluation of Dissolved Copper Data                                                                                                    |                |  |  |
|                | Evaluation of Dissolved Lead Data                                                                                                      |                |  |  |
|                | Evaluation of Dissolved Zinc Data                                                                                                      |                |  |  |
| 15.5.5         | Conclusions About Dissolved Metals Data                                                                                                | . 15-44        |  |  |
|                | n of Effectiveness of Wet-Weather Monitoring Program                                                                                   |                |  |  |
| 15.6.1         | Number and Location of Monitoring Stations                                                                                             | . 15-45        |  |  |
|                | Sufficiency of Data                                                                                                                    |                |  |  |
|                | Representativeness of Samples                                                                                                          |                |  |  |
|                | Program Effectiveness                                                                                                                  |                |  |  |
|                | Conclusions                                                                                                                            |                |  |  |
| 15.7 Reference | 15.7 References                                                                                                                        |                |  |  |
| 16 Conclusion  |                                                                                                                                        |                |  |  |



#### Tables

| Table 1-1: | 2023-2024 Stormwater Quality Management Committee (SQMC) Representatives                                                                           | 1-2  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 3-1: | 303(d) List of Impaired Waterbodies in the Las Vegas Valley (2022)                                                                                 | 3-1  |
| Table 3-2: | Cause and Contribution of Constituents of MS4 Discharges on Impaired Waterbodies in the Las Vegas Valley                                           | 3-2  |
| Table 4-1: | Las Vegas Valley MS4 Permittees Local Stormwater Ordinances and Status of Revisions to Ordinances                                                  | 4-1  |
| Table 5-1: | Best Management Practices Organized by Las Vegas Valley Stormwater Management Plan Program                                                         | 5-2  |
| Table 7-1: | Constituents and Analytical Methods in Wet Weather Samples for the Current MS4 Permit Year (2023-2024)                                             | 7-3  |
| Table 7-2: | Wet Weather Sampling Events for the Current MS4 Permit Year (2023-2024)                                                                            | 7-4  |
| Table 7-3: | The Club at Sunrise Wet Weather Monitoring Constituent Data for the Current MS4 Permit Year (2023-2024)                                            | 7-5  |
| Table 7-4: | Rainbow Gardens Wet Weather Monitoring Constituent Data for the Current MS4 Permit Year (2023-2024)                                                | 7-7  |
| Table 7-5: | The Club at Sunrise Wet Weather Monitoring Detected Organics Data for the Current MS4 Permit Year (2023-2024) and the Prior Three MS4 Permit Years | 7-9  |
| Table 7-6: | Rainbow Gardens Wet Weather Monitoring Detected Organics Data for the Current MS4 Permit Year (2023-2024) and the Prior Three MS4 Permit Years     | 7-10 |
| Table 8-1: | Pet Waste Disposal Bags Purchased by Permittees during the Current Permit Year (2023-2024) and the Prior Three Permit Years                        | 8-3  |
| Table 8-2: | Stormwater Quality Website Reviews during the Current Permit Year                                                                                  | 8-3  |
| Table 8-3: | Number of Public Outreach and Education Events Attended by the Permittees for the Current Permit Year (2023-2024) and the Prior Three Permit Years | 8-4  |
| Table 8-4: | Summary of Elementary School Presentations for the Current Permit Year (2023-<br>2024) and the Prior Three Permit Years                            | 8-5  |
| Table 8-5: | Summary of Public Service Announcements for the Current Permit Year (2023-2024)                                                                    | 8-5  |
| Table 8-6: | Educational Brochures Printed for the Current Permit Year (2023-2024)                                                                              | 8-6  |
| Table 9-1: | Summary of Street Sweeping Activity for the Current Permit Year (2023-2024) and the Prior Three Permit Years                                       | 9-2  |
| Table 9-2: | Summary of Storm Drain Maintenance Activity for the Current Permit Year (2023-<br>2024) and the Prior Three Permit Years                           | 9-4  |
| Table 9-3: | Summary of Detention Basin Maintenance Activity for the Current Permit Year (2023-<br>2024) and the Prior Three Permit Years                       | 9-5  |
| Table 9-4: | SNWA Reported Per Capita Water Use Rate (GPCD) for the Current Permit Year (2023-2024) and the Prior Three Permit Years                            | 9-6  |
| Table 9-5: | SNWA Water Smart Landscapes Program Data for the Current Permit Year (2023-<br>2024) and the Prior Three Permit Years                              | 9-7  |
| Table 9-6: | Republic Services Household Hazardous Waste Collection for the Current Permit Year (2023-2024)                                                     | 9-8  |



| Table 9-7: Enforcement of Non-Stormwater Discharges and Litter Complaints / Responses for the Current Permit Year (2023-2024) and the Prior Three Permit Years                | 9-9     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 9-8: Enforcement of Desert Dumping Complaints / Responses for the Current Permit Year         (2023-2024) and the Prior Three Permit Years                              | 9-10    |
| Table 10-1: Post-Construction Program for New Development and Significant Redevelopment         BMP Activity for the Current Permit Year (2023-2024)                          | 10-2    |
| Table 10-2: NDSR Acreage in Watersheds with Impaired Waterbodies for the Current Permit Year (2023-2024).                                                                     | 10-15   |
| Table 10-3: RCV vs WQCV for NDSR for the Current Permit Year (2023-2024) and the Prior<br>Three Permit Years                                                                  | 10-16   |
| Table 10-4: Status of Regional Detention Basins for the Current Permit Year (2023-2024) and the<br>Prior Three Permit Years                                                   | 10-18   |
| Table 10-5: Miles of Regional Channel Stabilization for the Current Permit Year (2023-2024) and the Prior Three Permit Years                                                  | 10-19   |
| Table 11-1:         Summary of Sanitary Sewer Line Inspection and Replacement Activity for the<br>Current Permit Year (2023-2024) and the Prior Three Permit Years            | 11-2    |
| Table 11-2:       Stormwater-Related Complaints Received for the Current Permit Year (2023-2024) and the Prior Three Permit Years                                             | 11-3    |
| Table 12-1: Number of Grease Interceptor Inspections Performed for the Current Permit Year         (2023-2024) and the Prior Three Permit Years                               | 12-2    |
| Table 12-2:       Summary of Southern Nevada Health District Industrial Facility Inspections for the Current Permit Year (2023-2024) and the Prior Three Permit Years         | 12-2    |
| Table 12-3:       Summary of Industrial Facility Stormwater Inspections and Follow-Up Actions for the Current Permit Year (2023-2024) and the Prior Three Permit Years        | 12-3    |
| Table 12-4:       Industrial Facilities in the Las Vegas Valley Subject to SARA Title III Section 313,<br>According to EPA TRI Search for the Current Permit Year (2023-2024) | 12-4    |
| Table 12-5:       Hazardous Waste Treatment, Disposal, and Recovery Facilities in the Las Vegas Valley, According to EPA RCRA Info for the Current Permit Year (2023-2024)    | 12-9    |
| Table 12-6: Inventory of Facilities and Inspection Frequency for 2023-2024 Permit Year                                                                                        | . 12-10 |
| Table 12-7: Number of Industrial Facility Inspectors for the Current Permit Year (2023-2024) and the Prior Three Permit Years                                                 | 12-14   |
| Table 13-1: Summary of Procedures for Notifying Developers, Engineers, and Operators about           NDEP Construction Site Program Requirements                              | 13-2    |
| Table 13-2: Construction Site Inspection Activities for the Current Permit Year (2023-2024) and the Prior Three Permit Years                                                  | 13-4    |
| Table 13-3: Summary of Construction Site Training Workshops for the Current Permit Year         (2023-2024)                                                                   | 13-5    |
| Table 14-1: Annual Las Vegas Valley MS4 Program Expenditures for the Current Permit Year (2023-2024)                                                                          | 14-1    |
| Table 14-2:       Anticipated Las Vegas Valley MS4 Program Budget for the Next Permit Year (2023-2024)                                                                        | 14-2    |
| Table 15-1: Mean Annual Rainfall in Western United States Cities                                                                                                              | . 15-11 |
| Table 15-2: Suspended Sediment Concentration in California Ecoregions                                                                                                         | 15-31   |



#### Figures

| Figure 2-1: Area of Coverage                                                                                                                          | 2-2   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 6-1: Las Vegas Valley Stormwater System: Overview                                                                                              | 6-3   |
| Figure 6-2: Las Vegas Valley Stormwater System: Northwest                                                                                             | 6-5   |
| Figure 6-3: Las Vegas Valley Stormwater System: Northeast                                                                                             | 6-7   |
| Figure 6-4: Las Vegas Valley Stormwater System: Southwest                                                                                             | 6-9   |
| Figure 6-5: Las Vegas Valley Stormwater System: Southeast                                                                                             | 6-11  |
| Figure 7-1: Wet Weather Monitoring Sites 2023-2024                                                                                                    | 7-2   |
| Figure 8-1: Regional Transportation Commission of Southern Nevada (RTC) Standard Dra<br>No. 421 "Stormwater Quality Management Stamp and Sign Detail" |       |
| Figure 10-1: Las Vegas Valley NDSR: Overview                                                                                                          |       |
| Figure 10-2: Las Vegas Valley NDSR: Northwest                                                                                                         |       |
| Figure 10-3: Las Vegas Valley NDSR: Northeast                                                                                                         |       |
| Figure 10-4: Las Vegas Valley NDSR: Southwest                                                                                                         | 10-11 |
| Figure 10-5: Las Vegas Valley NDSR: Southeast                                                                                                         | 10-13 |
| Figure 10-6: Las Vegas Valley Regional WQCV Implementation Schedule                                                                                   | 10-17 |
| Figure 12-1: Industrial Facility Locations                                                                                                            |       |
| Figure 15-1: Las Vegas Valley Permittee jurisdictional boundaries                                                                                     |       |
| Figure 15-2: 1975 flood on the Las Vegas Strip                                                                                                        |       |
| Figure 15-3: Map of stormwater infrastructure in the Las Vegas Valley                                                                                 |       |
| Figure 15-4: Oakey Detention Basin                                                                                                                    |       |
| Figure 15-5: Low-flow facility at Oakey Detention Basin                                                                                               |       |
| Figure 15-6: Sediment removal at Oakey Detention Basin                                                                                                |       |
| Figure 15-7: SNWA weir construction along Las Vegas Wash                                                                                              |       |
| Figure 15-8: Las Vegas Valley infiltration suitability map                                                                                            | 15-13 |
| Figure 15-9: Hydrogeologic schematic of Las Vegas Valley                                                                                              | 15-15 |
| Figure 15-10: Arial photograph of new development adjacent to undisturbed area in the Vegas Valley                                                    |       |
| Figure 15-11: Wet weather monitoring locations and watersheds                                                                                         | 15-19 |
| Figure 15-12: Wet weather hydrograph for August 11-12, 2022                                                                                           | 15-20 |
| Figure 15-13: Wet weather hydrograph for September 1, 2023                                                                                            | 15-21 |
| Figure 15-14: Club at Sunrise: TSS vs. turbidity during wet weather sampling events                                                                   | 15-23 |
| Figure 15-15: Club at Sunrise: TSS vs. turbidity during wet weather sampling events                                                                   | 15-23 |
| Figure 15-16: Rainbow Gardens: TSS vs. turbidity during wet weather sampling events                                                                   | 15-24 |
| Figure 15-17: Rainbow Gardens: TSS vs turbidity during wet weather sampling events                                                                    | 15-24 |
| Figure 15-18: Club at Sunrise: TSS & turbidity vs. flow during wet weather sampling events                                                            | 15-25 |
| Figure 15-19: Rainbow Gardens: TSS & turbidity vs flow during wet weather sampling events                                                             | 15-26 |



| Figure 15-20: Upstream vs. downstream TSS during wet weather sampling events                    |
|-------------------------------------------------------------------------------------------------|
| Figure 15-21: Upstream vs. downstream turbidity during wet weather sampling events              |
| Figure 15-22: Club at Sunrise: Sample location on hydrograph                                    |
| Figure 15-23: Rainbow Gardens: Sample location on hydrograph                                    |
| Figure 15-24: Club at Sunrise: Concentration vs. weeks since last sample                        |
| Figure 15-25: Rainbow Gardens: Concentration vs. weeks since last sample                        |
| Figure 15-26: Level III ecoregions of the southwestern U.S                                      |
| Figure 15-27: Regional TSS comparison to Las Vegas Valley wet weather monitoring stations 15-32 |
| Figure 15-28: Lake Mead Station 1.85 chlorophyll-a monthly mean concentrations                  |
| Figure 15-29: Lake Mead Station 1.85 chlorophyll-a summer mean concentrations                   |
| Figure 15-30: Lake Mead Station 1.85 chlorophyll-a four-summer mean concentrations              |
| Figure 15-31: Lake Mead Station 2.7 chlorophyll-a growing season mean concentrations            |
| Figure 15-32: Lake Mead Station 3.5 chlorophyll-a growing season mean concentrations            |
| Figure 15-33: Boulder Basin chlorophyll-a growing season mean concentrations                    |
| Figure 15-34: Conductivity plume at Las Vegas Wash confluence with Lake Mead 15-39              |
| Figure 15-35: Turbidity plume at Las Vegas Wash confluence with Lake Mead                       |
| Figure 15-36: Club at Sunrise: Orthophosphate vs. weeks since last sample                       |
| Figure 15-37: Rainbow Gardens: Orthophosphate vs. weeks since last sample                       |
| Figure 15-38: Rainbow Gardens: dissolved copper vs. weeks since last sample                     |
| Figure 15-39: Rainbow Gardens: dissolved lead vs. weeks since last sample                       |
| Figure 15-40: Rainbow Gardens: dissolved zinc vs. weeks since last sample                       |



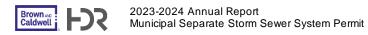
#### Appendices

Appendix A.

A-1 Historic Wet Weather Data

A-2 Storm and Wet Weather Reports (2023 – 2024)

Appendix B. Hydrographs for sampling events at The Club at Sunrise and Rainbow Gardens




#### Acronyms and Abbreviations

| ac-ft      | Acre-feet                                                         |
|------------|-------------------------------------------------------------------|
| BLM        | Bureau of Land Management                                         |
| BMP        | Best Management Practice                                          |
| BOD        | Biochemical Oxygen Demand                                         |
|            |                                                                   |
| CAMP<br>CC | Comprehensive Adaptive Management Plan                            |
|            | Clark County                                                      |
| CCPRO      | Clark County Public Response Office                               |
| CCRFCD     | Clark County Regional Flood Control District                      |
| CESQG      | Conditionally Exempt Small Quantity Generators of Hazardous Waste |
| CFR        | Code of Federal Regulations                                       |
| CLV        | City of Las Vegas                                                 |
| CNLV       | City of North Las Vegas                                           |
| COD        | Chemical Oxygen Demand                                            |
| СОН        | City of Henderson                                                 |
| conc.      | Concentration                                                     |
| CWA        | Clean Water Act                                                   |
| DB         | Detention Basin                                                   |
| DES        | Clark County Department of Environment and Sustainability         |
| E. Coli    | Escherichia coli                                                  |
| EDB        | Extended Detention Basin                                          |
| EPA        | Environmental Protection Agency                                   |
| GIS        | Geographic Information System                                     |
| GPCD       | Gallons per capita per day                                        |
| IC         | lon Chromatography                                                |
| ICAP       | Inductively Coupled Argon Plasma Spectroscopy                     |
| IDDE       | Illicit Discharge Detection and Elimination                       |
| IR         | Nevada 2014 Water Quality Integrated Report                       |
| lbs/day    | pounds per day                                                    |
| LID        | Low Impact Development                                            |
| LMWQF      | Lake Mead Water Quality Forum                                     |
| LVMC       | Las Vegas Municipal Code                                          |
| LVV        | Las Vegas Valley                                                  |
| LVVWAC     | Las Vegas Valley Watershed Advisory Committee                     |
| LVW        | Las Vegas Wash                                                    |
| LVWCC      | Las Vegas Wash Coordination Committee                             |
| MBAS       | Methylene Blue Active Substance (Surfactants)                     |
| MEP        | Maximum Extent Practicable                                        |
| MGD        | million gallons per day                                           |
| mg/L       | milligrams per liter                                              |
| μg/L       | micrograms per liter                                              |
| MM-##      | Maintenance Measure Best Management Practices                     |
| MPU        | Master Plan Update                                                |



| _       |                                                       |
|---------|-------------------------------------------------------|
| MS4     | Municipal Separate Storm Sewer System                 |
| MWP     | Maintenance Work Program                              |
| NA      | Not Available / Not Analyzed                          |
| NAC     | Nevada Administrative Code                            |
| NAICS   | North American Industry Classification System         |
| ND      | Non-detect / Not Detected                             |
| NDEP    | Nevada Division of Environmental Protection           |
| NDOT    | Nevada Department of Transportation                   |
| NDSR    | New Development and Significant Redevelopment         |
| Ν       | Nitrogen                                              |
| NOI     | Notice of Intent                                      |
| NOV     | Notice of Violation                                   |
| NPDES   | National Pollutant Discharge Elimination System       |
| NPS     | Non-Point Source                                      |
| NTU     | Nephelometric Turbidity Units                         |
| Р       | Phosphorus                                            |
| PE      | Professional Engineer                                 |
| pН      | Measure of acidity or alkalinity                      |
| PSA     | Public Service Announcement                           |
| RCRA    | Resource Conservation and Recovery Act                |
| RCV     | Required Capture Volume                               |
| RMHQ    | Requirement to Maintain Higher Quality                |
| RTC     | Regional Transportation Commission of Southern Nevada |
| SARA    | Superfund Amendments and Reauthorization Act          |
| SC-##   | Source Control Best Management Practices              |
| SD-##   | Site Design Best Management Practices                 |
| SIC     | Standard Industrial Classification                    |
| SNHD    | Southern Nevada Health District                       |
| SNWA    | Southern Nevada Water Authority                       |
| SNWS    | Southern Nevada Water System                          |
| sq. ft. | square feet                                           |
| SQMC    | Stormwater Quality Management Committee               |
| SVOC    | Semivolatile Organic Compound                         |
| SWMP    | Stormwater Management Plan                            |
| SWPPP   | Stormwater Pollution Prevention Plan                  |
| SWRCB   | State Water Resources Control Board                   |
| TC-##   | Treatment Control Best Management Practices           |
| TDS     | Total Dissolved Solids                                |
| TKN     | Total Kjeldahl Nitrogen                               |
| TM      | Technical Memorandum                                  |
| TMDL    | Total Maximum Daily Load                              |
| TOC     | Total Organic Carbon                                  |
| TON     | Total Organic Nitrogen                                |
| TRI     | Toxic Release Inventory                               |
|         | TOATE TREESE INVENTORY                                |



| TSS  | Total Suspended Solids          |
|------|---------------------------------|
| UDB  | Ultimate Development Boundary   |
| USGS | United States Geological Survey |
| VOC  | Volatile Organic Compound       |
| WLA  | Wasteload Allocation            |
| WQCV | Water Quality Capture Volume    |
| WQS  | Water Quality Standard          |
| WWTP | Wastewater Treatment Plant      |
|      |                                 |



# Executive Summary



# Executive Summary

#### 1 Introduction

The United States Environmental Protection Agency (EPA) has adopted regulations to control pollutants entering the environment through storm drainage facilities associated with the Municipal Separate Storm Sewer System (MS4). In compliance with these regulations, the Nevada Division of Environmental Protection (NDEP) issued National Pollutant Discharge Elimination System (NPDES) MS4 Permit No. NV0021911 jointly to the Clark County Regional Flood Control District (CCRFCD), the City of Las Vegas (CLV), the City of North Las Vegas (CNLV), the City of Henderson (COH), and Clark County (CC), collectively known as the Las Vegas Valley Permittees (Permittees).

According to permit requirements, the Permittees developed a Stormwater Management Plan (SWMP) that described specific activities, responsibilities, and measurable goals adopted to comply with the various permit provisions. This Annual Report highlights the Permittees' compliance with the permit and SWMP requirements for the permit year spanning from July 1, 2023 through June 30, 2024.

#### 2 Area of Coverage

The Las Vegas Valley NPDES MS4 Permit applies to all the urbanized and urbanizing watershed areas that are naturally tributary to the Las Vegas Wash. The permit area of coverage includes the cities of Las Vegas, the majority of North Las Vegas, and Henderson, as well as the portions of unincorporated Clark County that lie within the Las Vegas Valley's Ultimate Development Boundary (UDB). The permit does not apply to federal or state-owned land in the Las Vegas Valley or to sites that have their own NPDES MS4 permit.

### 3 Water Quality Standards

The Las Vegas Valley NPDES MS4 Permit requires the Permittees to evaluate whether stormwater discharges contribute directly or indirectly to the impairment of waterbodies, according to Section 303(d) of the Clean Water Act. The Permittees identified five 303(d) list impaired waterbodies within the permit area of coverage (Duck Creek, Flamingo Wash, Las Vegas Creek, Las Vegas Wash, and Sloan Channel). The impairments identified included: boron, *E. Coli*, fluoride, iron, selenium, total dissolved solids (TDS), temperature, and Total Suspended Solids (TSS). The NPDES MS4 Permit requires the Permittees to comply with permit Section B.4.2.2 (SWMP) for constituents with established TMDLs. Only phosphorus and ammonia have an established Total Maximum Daily Load (TMDL).

#### 4 Legal Authority

Section B.5.15 of the NPDES MS4 Permit for the Las Vegas Valley requires each of the Permittees to have an ordinance in place to authorize or enable all requirements of the permit. Further, Section B.5.1.6 of the permit requires the Permittees to present a review of legal authority to implement the requirements of the permit and the SWMP, and to identify additional ordinances or regulatory mechanisms to be adopted. During the permit year, each of the municipal Permittees (CLV, CNLV, CC, and COH) was supported by local ordinances that grant them the authority to implement the



requirements of the NPDES MS4 Permit. The Permittees reviewed local stormwater ordinances during the 2023-2024 MS4 permit year, with some revisions as noted in Chapter 4.

#### 5 Stormwater Management Approach

The Las Vegas Valley NPDES MS4 Permit required the Permittees to develop a SWMP that was suited to the unique local hydrologic, hydrogeologic, and regional conditions of the Las Vegas Valley, and that was also consistent with local and state laws, regulations, and water resources plans. The Las Vegas Valley SWMP that applies to the 2023-2024 MS4 permit year was approved by NDEP in 2011 and was implemented in November 2013. The SWMP details the BMPs assigned to each of the SWMP Programs and are described in this Annual Report.

#### 6 Source Identification

In compliance with permit Section B.5.2, the Permittees provided updated maps of their stormwater infrastructure systems, including the locations of all major outfalls.

### 7 Stormwater Monitoring Program

To satisfy the requirements of permit Section B.5.3, the Permittees conducted wet weather monitoring using two automated monitoring stations and sampling protocols as were used in previous years. Wet weather samples were collected from stormwater runoff at The Club at Sunrise and Rainbow Gardens sampling sites, after one significant event in September 2023. The laboratory analysis of wet weather samples did not show evidence of changes in water quality characteristics that would indicate the need to modify the SWMP or improve performance of specific BMPs.

## 8 Public Outreach and Education Program

The Permittees satisfied the requirements of permit Section B.5.4 through the implementation of seven BMPs directed at educating the public to reduce the discharge of pollutants to the MS4 to the maximum extent practicable. During the permit year, the Permittees maintained the storm drain inlet marking program; disseminated printed educational materials at 65 community events, including materials targeted at reducing pet waste; broadcasted several public service announcements; maintained the collaborative stormwater website (www.LVstormwater.com); as well as presented educational sessions to local elementary school students.

## 9 Source Control and MS4 Maintenance Program

Section B.5.5 of the NPDES MS4 Permit for the Las Vegas Valley includes requirements for a Source Control and MS4 Maintenance Program to reduce pollutants in stormwater runoff from commercial and residential areas. During the permit year, the Permittees continued to implement several maintenance and source control BMPs to meet permit requirements. The municipal Permittees swept curbed-and-paved public city streets once every 30 days; inspected at least 20% of the total number of drop inlets within their jurisdiction and cleaned them as appropriate; inspected detention basins twice annually and cleaned them as needed; as well as reviewed public facility maintenance plans. The Permittees also trained staff on proper application of fertilizers / pesticides and continued to explore the use of alternative products and application procedures. Additionally, the



Permittees maintained and enforced their stormwater ordinances, which resulted in over 5,700 recorded enforcement actions, ranging in severity from verbal warnings to administrative penalties.

Permittee ordinances also supported water conservation measures, with reports from SNWA indicating that the community uses approximately 89 gallons per capita per day in the Las Vegas Valley, while water savings from the Smart Landscapes ("turf conversion") Program exceeded 702 million gallons during the permit year. Further, Republic Services also continued to serve as a local resource for household hazardous waste collection.

# 10 Post-Construction Program for New Development and Significant Redevelopment

The Permittees implemented all planned measures to address new development and significant redevelopment (NDSR) in the permit area, in accordance with permit Section B.5.6. NDSR was identified in updated GIS maps of the Las Vegas Valley and included approximately 1,549 acres.

The BMPs that continue to be implemented for the Post-Construction NDSR Program are appropriate for the Las Vegas Valley's unique hydrologic, hydrogeologic, and regional conditions. During the permit year, all Permittees reviewed development plans for compliance with: open space and landscaping objectives, rural land overlay, hillside development ordinances, standard drainage design criteria, and parking lot Low Impact Development (LID) measures. The Permittees also promoted green building initiatives and other LID measures, when appropriate. It was standard practice to cover and raise fuel areas, as well as provide emergency shut-off switches at all new gas stations. Some Permittees also utilized treatment control BMPs and installed sand / oil separators to further the removal of solids and floatable materials from stormwater.

The Permittees utilize their Watershed Program approach for addressing runoff from areas of new development. The Watershed Program is included in the SWMP, however it is not a specific MS4 permit requirement. As such, it is incorporated into the NDSR discussion. The Permittees rely on the Watershed Program to mitigate potential impacts of stormwater runoff from existing and new development of all kinds. Key elements include: regional detention basin construction, regional channel lining, construction of Las Vegas Wash channel stabilization structures, and installing low-flow features in regional detention basins. During the permit year, two detention basins were upgraded to include low-flow features, Gowan North (53.6 AF) and Oakey (12.5 AF), increasing the total Water Quality Capture Volume (WQCV) of the Las Vegas Valley by 66.1 AF.

#### 11 Illicit Discharge Detection and Elimination Program

The Permittees implemented all planned program elements for detecting and eliminating illicit discharges to the storm drain system, per permit Section B.5.7. Key program elements included twice yearly MS4 system inspections, and sanitary sewer line inspections to minimize sanitary sewer overflows. Storm channel inspections did not indicate a trend of illicit discharge.

### 12 Industrial Facility Monitoring and Control Program

In compliance with Permit Section B.5.8, the Permittees implemented all planned elements of the Industrial Facility Monitoring and Control Program. During the permit year, the Permittees utilized an industrial facility stormwater inspection checklist to perform annual inspections of all of the Superfund Amendments and Reauthorization Act (SARA) Title III Section 313 facilities and



hazardous waste treatment, disposal, and recovery facilities within their jurisdictions. Additional industrial facilities were inspected during the permit year, as indicated in the updated industrial facility inventories. During the permit year, the Permittees continued to perform industrial facility pretreatment inspections and grease interceptor inspections. Training of the Permittees' industrial facility inspectors was conducted on an as needed basis.

### 13 Construction Site Program

The Permittees satisfied the requirements of permit Sections B.5.9 and B.5.10 by continuing to implement three source control BMPs. During the permit year, construction site inspections were conducted to identify active discharges, as well as to evaluate BMPs for their efficacy at preventing potential discharges and to educate construction site operators. The Permittees inspected construction sites over 100 acres and construction sites deemed a "significant threat" to water quality on a monthly basis, while other construction sites were inspected at least two times during the construction period. The Permittees utilized a construction site stormwater inspection checklist to identify potential violations. When identified, the Permittees responded to 100% of violations in accordance with Standard Operating Procedures. To keep the construction industry informed about local and state stormwater requirements and to minimize violations, the Permittees collectively hosted four training sessions during the permit year, which were attended by over 125 construction professionals.

#### 14 Staff and Resources

According to permit Section B.6.3.3.11, the Permittees provided information on annual expenditures for the major programs identified in the SWMP for the current permit year. Annual program expenditures for the 2023-2024 MS4 permit year were approximately \$215 million for all Permittees combined. The budget for the 2024-2025 MS4 permit year is approximately \$214 million. Funding mechanisms and staffing for the Las Vegas Valley MS4 Program for the 2024-2025 MS4 permit year are expected to be similar to those of the reporting permit year.

## 15 Evaluation of Characterization Data

This section evaluates wet weather characterization data previously submitted and collected. This section also evaluates whether existing data collection programs should be modified. The evaluation provides background and historical information, evaluation of wet weather hydrographs, and evaluation of suspended solids, turbidity, nutrients, and dissolved copper, dissolved lead, and dissolved zinc. This informed the evaluation of the effectiveness of the stormwater monitoring program.

The main conclusions of the evaluation of wet weather characterization data were that:

- There are an appropriate number of monitoring stations and they are appropriately located.
- Although the amount of data is limited by the number of sampleable storms, the amount of data collected is sufficient to inform the issues considered in this evaluation.
- Samples collected are representative of conditions in Las Vegas Valley. Samples may not
  perfectly represent the entirety of all storms, because the trailing end of storms are not
  sampled. The trailing end of storms are likely to contain lower concentrations than the
  sampled portions.



#### 16 Conclusion

The Permittees prepared this Annual Report for the 2023-2024 MS4 permit year to report to NDEP on the status of the MS4 program and to highlight compliance with the permit and SWMP. Annual Report requirements in the MS4 permit were satisfied and all program BMP goals were achieved.



# Section 1

Introduction



## 1 Introduction

The United States Environmental Protection Agency (EPA) has adopted regulations to control pollutants entering the environment through storm drainage facilities associated with the Municipal Separate Storm Sewer System (MS4). In compliance with these regulations, on February 5, 2024, the Nevada Division of Environmental Protection (NDEP) issued National Pollutant Discharge Elimination System (NPDES) Permit No. NV0021911 jointly to the Clark County Regional Flood Control District (CCRFCD), the City of Las Vegas (CLV), the City of North Las Vegas (CNLV), the City of Henderson (COH), and Clark County (CC), collectively known as the Las Vegas Valley Permittees (Permittees). The permit authorizes the Permittees to discharge stormwater from outfalls to the Las Vegas Wash and its tributaries. The permit was issued for a period of five years (2024-2029).

#### 1.1 Annual Report Organization

This Annual Report was prepared to verify that the Permittees have complied with the permit requirements and measurable goals identified in the current Stormwater Management Plan (SWMP) for the year from July 1, 2023 through June 30, 2024. The Annual Report is organized to address each of the main programs required by the NPDES MS4 Permit and associated SWMP for the Las Vegas Valley:

- Section 1.0 Introduction
- Section 2.0 Area of Coverage
- Section 3.0 Water Quality Standards
- Section 4.0 Legal Authority
- Section 5.0 Stormwater Management Approach
- Section 6.0 Source Identification
- Section 7.0 Stormwater Monitoring Program
- Section 8.0 Public Outreach and Education Program
- Section 9.0 Source Control and MS4 Maintenance Program
- Section 10.0 Post-Construction Program for New Development and Significant Redevelopment
- Section 11.0 Illicit Discharge Detection and Elimination Program
- Section 12.0 Industrial Facility Monitoring and Control Program
- Section 13.0 Construction Site Program
- Section 14.0 Staff and Resources
- Section 15.0 Conclusion

### 1.2 Permit Coordination

The CCRFCD has taken the lead for general administration of the permit conditions, preparation of reports, coordination among Permittees, and serving as the liaison with NDEP. In addition, the



CCRFCD provides funding for many of the regional permit compliance efforts. The CCRFCD also retained Brown and Caldwell and HDR to assist with preparation of information required to comply with the conditions of the permit.

Further permit coordination during the permit year was facilitated by the Stormwater Quality Management Committee (SQMC). The SQMC is comprised of representatives from each of the Permittees (Public Works Director or equivalent), who vote on topics critical for permit implementation. Public SQMC meetings were held four times, on August 8, 2023, on November 14, 2023, February 13, 2024, and May 14, 2024.

SQMC meetings were regularly attended by other employees of the Permittees, employees of other local agencies, entities that have an interest in water quality issues (i.e., stakeholders), and members of the general public. Meeting agendas and meeting minutes were made available to the public and time was allowed in each meeting for public comments.

The SQMC Representatives for the 2023-2024 MS4 permit year are shown in Table 1-1.

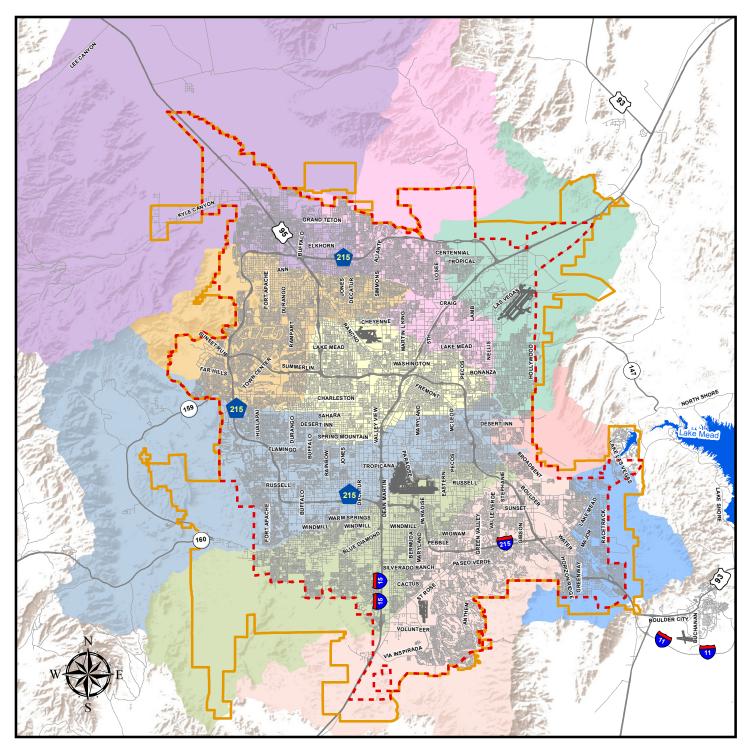
| Table 1-1: 2023-2024 Stormwater Qual | ity Management Committee | (SQMC) Representatives |
|--------------------------------------|--------------------------|------------------------|
|--------------------------------------|--------------------------|------------------------|

| SQMC Representatives                     | Title                                      | Permittee                                       |  |
|------------------------------------------|--------------------------------------------|-------------------------------------------------|--|
| Steve Parrish, PE (Chair)                | General Manager/Chief Engineer             | Clark County Regional Flood<br>Control District |  |
| Lance Olson, PE                          | Director of Public Works                   | City of Henderson                               |  |
| Joey Paskey, PE                          | Director of Public Works                   | City of Las Vegas                               |  |
| Mike Hudgeons, PE                        | Director of Public Works                   | City of North Las Vegas                         |  |
| Denis Cederburg, PE                      | Director of Public Works                   | Clark County                                    |  |
| SQMC Alternate Representatives           | Title                                      | Permittee                                       |  |
|                                          |                                            | Clark County Regional Flood                     |  |
| Andrew Trelease, PE                      | Assistant General Manager                  | Control District                                |  |
| Andrew Trelease, PE<br>Steven Conner, PE | Assistant General Manager<br>City Engineer |                                                 |  |
| ,                                        |                                            | Control District                                |  |
| Steven Conner, PE                        | City Engineer                              | Control District<br>City of Henderson           |  |

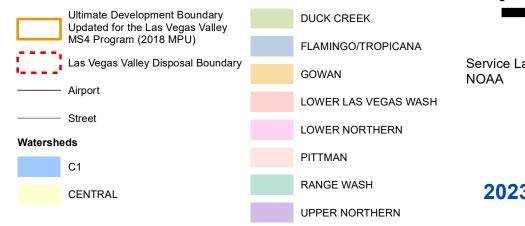


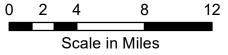
# Section 2

Area of Coverage



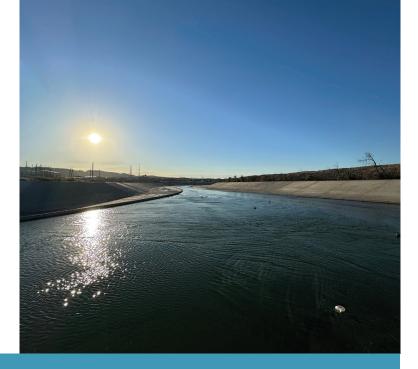

## 2 Area of Coverage


The Las Vegas Valley NPDES MS4 Permit applies to all the urbanized and urbanizing watershed areas that are naturally tributary to the Las Vegas Wash within the UDB. The Las Vegas Wash is upstream of Lake Las Vegas, which is located approximately two miles upstream of Lake Mead. The permit area of coverage includes the cities of Las Vegas, the majority of North Las Vegas, and Henderson, as well as the portions of unincorporated Clark County that lie within the Las Vegas Valley. The permit does not apply to federal or state-owned land in the Las Vegas Valley or to sites that have their own NPDES MS4 Permit (i.e., Nellis Air Force Base, Nevada Department of Transportation [NDOT] facilities).


The CCRFCD established an ultimate development boundary (UDB) in the 2008 Las Vegas Valley Flood Control Master Plan Update (MPU), which was revised in the 2018 MPU. The UDB assumes the full "build out" condition is reached and all available land within the Las Vegas Valley is fully developed. This condition is assumed to ensure that flood control facilities built today will have capacity for future run-off. The development of the UDB is based on the limits of where development is expected to occur in the Las Vegas Valley, using criteria such as location of protected lands and mountain terrain that surround the Valley. The Bureau of Land Management (BLM) manages a "disposal boundary" in the Las Vegas Valley, which designates federally managed lands that could eventually be privatized and potentially developed.

The permit area encompasses the area within the 2018 UDB area within the Las Vegas Valley (LVV) watershed that ultimately contributed to the Las Vegas Wash. The area of coverage for the 2023-2024 MS4 permit year includes the UDB 2018 – Updated for the Las Vegas Valley MS4 Program and the BLM Disposal Boundary, as shown in Figure 2-1.




#### Legend





Service Layer Credits: Sources: Esri, USGS, NOAA

#### Figure 2-1 Area of Coverage 2023-2024 Annual Report



# Section 3

Water Quality Standards



## 3 Water Quality Standards

Sections B.4.1. and B.4.2. of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley include requirements relative to potential contributions of stormwater to impaired waters of the United States. In accordance with the requirements of Section 303(d) of the Clean Water Act (CWA), the Permittees must evaluate whether stormwater discharges from any part of the MS4 contribute directly or indirectly to the listing of a waterbody as an impaired waterbody on the 303(d) list. If MS4 discharges are found to contribute to the listing of a waterbody on the 303(d) list, the Permittees must also determine whether a Total Maximum Daily Load (TMDL) has been approved by NDEP for the waterbody, as well as determine compliance with the established TMDL.

#### 3.1 Impaired Waters in the Las Vegas Valley

In accordance with the CWA, every two years the NDEP conducts a comprehensive water quality data analysis concerning Nevada's surface waters to determine compliance with established water quality standards. The Nevada 2020-2022 Water Quality Integrated Report (IR), which assessed data from October 1, 2013 through September 30, 2020, was finalized in February 2022.

Segments of the Las Vegas Wash and selected tributaries were identified in the IR as waterbodies impaired for the following parameters: boron, selenium, total dissolved solids (TDS), total suspended solids (TSS), fluoride, iron, *Escherichia coli* (*E. Coli*), and temperature, as indicated in Table 3-1.

| Table 3-1. 303(d) List of imparied waterbodies in the Las Vegas Valley (2022) |                                         |                              |                          |
|-------------------------------------------------------------------------------|-----------------------------------------|------------------------------|--------------------------|
| Waterbody                                                                     | Location                                | Impairment Parameter         | Beneficial Use(s)        |
|                                                                               |                                         | Boron                        | Irrigation               |
| Duck Creek                                                                    | From its origin to the                  | Fluoride                     | Irrigation               |
|                                                                               | Fromits origin to the<br>Las Vegas Wash | Selenium                     | Aquatic Life, Irrigation |
|                                                                               |                                         | Total Dissolved Solids (TDS) | Livestock                |
|                                                                               |                                         | Temperature                  | Aquatic Life             |
|                                                                               |                                         | Boron                        | Irrigation               |
| Flamingo Wash                                                                 | From its origin to the                  | Iron                         | Aquatic Life             |
| Fiamingu wash                                                                 | Las Vegas Wash                          | Selenium                     | Aquatic Life, Irrigation |
|                                                                               |                                         | Total Suspended Solids (TSS) | Aquatic Life             |
| Las Vegas Creek                                                               | Fromits origin to the<br>Las Vegas Wash | Selenium                     | Aquatic Life             |
|                                                                               |                                         | Boron                        | Irrigation               |
|                                                                               |                                         | E. Coli                      | Recreation no Contact    |
| Las Vegas Wash                                                                | Above treatment                         | Iron                         | Aquatic Life             |
|                                                                               | plants                                  | Selenium                     | Aquatic Life             |
|                                                                               |                                         | Total Dissolved Solids (TDS) | Livestock                |
|                                                                               |                                         | Total Suspended Solids (TSS) | Aquatic Life             |
|                                                                               | From North Las                          | Boron                        | Irrigation               |
| Sloan Channel                                                                 | Vegas Blvd to the                       | Fluoride                     | Irrigation               |
|                                                                               | Las Vegas Wash                          | Selenium                     | Aquatic Life, Irrigation |

Table 3-1: 303(d) List of Impaired Waterbodies in the Las Vegas Valley (2022)

Nevada has revised the standards (NAC 445a), so some impaired parameters will be removed in the future. Sources of constituents causing impairment, as included in the 303(d) list that have the potential for direct or indirect contributions by flows from the MS4 system, are summarized in Table 3-2. As stated in the IR, waterbody impairments are largely due to nonpoint source pollution (e.g., recharge to shallow groundwater aquifers and natural erosion).



## Table 3-2: Cause and Contribution of Constituents of MS4 Discharges on Impaired Waterbodies in the Las Vegas Valley

| Constituent | Cause of Listing                                                           | Did Stormwater Cause or Contribute to the Listing? |
|-------------|----------------------------------------------------------------------------|----------------------------------------------------|
| Boron       | Flow through native sub-surface soils;<br>Resurfacing shallow groundwater  | No                                                 |
| E. Coli     | Attributed to animals/wildlife                                             | No                                                 |
| Fluoride    | Flow through native sub-surface soils;<br>Resurfacing shallow groundwater  | No                                                 |
| Iron        | Sediment transported in stream channels;<br>Soil runoff                    | No                                                 |
| Selenium    | Flow through native sub-surface soils;<br>Resurfacing shallow groundwater  | No                                                 |
| TDS         | Flow through native sub-surface soils;<br>Resurfacing shallow groundwater; | No                                                 |
| Temperature | Weather conditions                                                         | No                                                 |
| TSS         | Sediment transported in stream channels<br>Soil runoff                     | No                                                 |

#### 3.2 Water Quality Standards

The Nevada Administrative Code (NAC) Section 445A outlines water quality standards designed to protect Nevada's surface waters.

At the Club at Sunrise, the wet weather sample exhibited a concentration higher than the water quality standard (WQS) for iron. At the Rainbow Gardens site, the wet weather sample exhibited a concentration higher than the WQS for iron. Iron is a common and natural constituent of soil. The iron is believed to be from natural erosion.

#### 3.3 Permit Compliance for Constituents with a TMDL

The NPDES MS4 Permit requires the Permittees to comply with permit Section B.4.2.2 for constituents with established TMDLs. The NDEP has approved a TMDL for total phosphorus and total ammonia for the Las Vegas Wash. The total ammonia TMDL is allocated entirely to point source wastewater discharges.

B.4.2.2.1 Determine and report whether the approved TMDL applies to stormwater discharges from the Permittees' MS4;

The approved TMDL does not apply to stormwater discharges from the Permittee's MS4.

*B.4.2.2.2 Determine and report whether the TMDL includes a pollutant wasteload allocation ("WLA") or other performance requirements specifically for stormwater discharge from the Permittees' MS4;* 

The phosphorus and ammonia TMDLs do not include a pollutant WLA or other performance requirements specifically for stormwater discharge from the Permittees' MS4.

B.4.2.2.3 Determine and report whether the TMDL addresses a flow regime likely to occur during periods of stormwater discharge;

The phosphorus and ammonia TMDLs do not address a flow regime likely to occur during periods of stormwater discharge.

B.4.2.2.4 Assess whether applicable WLAs are being met through implementation of existing stormwater control measures and evaluate whether additional or modified control measures are necessary;

The WLAs apply to the wastewater discharges and are being met. The load allocation of 100 lbs/day for total phosphorus is currently being met.

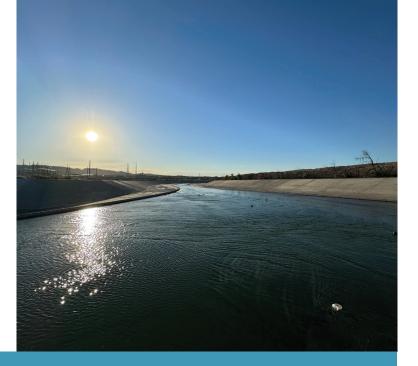


B.4.2.2.5 Document all control measures currently being implemented or planned to be implemented to be consistent with an applicable WLA. Also include a schedule of implementation for all planned controls. Document the calculations or other evidence that shows that the WLA will be met;

Not applicable, however, BMPs adopted in the SWMP address phosphorus and other nutrients.

B.4.2.2.6 Describe a monitoring program to determine whether the stormwater controls are adequate to meet the WLA;

Not applicable.


B.4.2.2.7 If the evaluation shows that additional or modified controls are necessary, describe the type and schedule for the control additions/revisions, and an analysis that demonstrates the overall effectiveness.

No additional or modified BMPs are necessary.



2023-2024 Annual Report Municipal Separate Storm Sewer System Permit

This Page Intentionally Left Blank.



# Section 4

Legal Authority



## 4 Legal Authority

Section B.5.15 of the NPDES MS4 Permit for the Las Vegas Valley requires each of the Permittees to have an ordinance in place to authorize or enable all requirements of the permit. Further, Section B.5.1.6 of the permit requires the Permittees to present a review of legal authority to implement the requirements of the permit and the SWMP and to identify additional ordinances or regulatory mechanisms to be adopted.

#### 4.1 Ordinances and Revisions to Ordinances

The Cities and Clark County Permittees are supported by local ordinances that grant them the authority to implement the requirements of the NPDES MS4 Permit. The Permittees' existing stormwater ordinances, as well as the status of revisions to ordinances related to stormwater for the permit year, are listed in Table 4-1. When appropriate, modifications to ordinances were adopted within the 12 month target window.

Current stormwater ordinances for each municipal Permittee are found by searching the municode library website by location (<u>https://library.municode.com</u>). The existing legal authority of Permittees is adequate to prohibit illegal discharges to the MS4, to control spills, and to determine and require compliance with all current NPDES MS4 Permit program components.

| Municipal<br>Permittee | Local Stormwater Ordinance(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Annual<br>Review<br>Performed | Revisions to Ordinances                                                     |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|
| City of<br>Henderson   | Chapter 13.04 of the City of Henderson<br>Municipal Code: Stormwater Regulations;<br>19.8.4 COH Hillside Overlay District; 19.14.6<br>Drainage Design Adoption of the HCCDM;<br>Title 14 Utility Services; Title 15.12 Property<br>Maintenance Code; Title 15.32 International<br>Fire Code                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                           | None                                                                        |
| City of Las<br>Vegas   | LVMC 6.54 Mobile Car Wash/Auto Detail<br>Business; LVMC 13.04 Use of Streets and<br>Sidewalks; LVMC 14.08 Water Regulations;<br>LVMC 14.11 Water Conservation; LVMC<br>14.17 Wastewater Collection and Treatment;<br>LVMC 14.18 Stormwater and Stormwater<br>Management; LVMC 20.04 Flood Control<br>Channels Master Plan; LVMC 20.08 Flood<br>Hazard Reduction; LVMC 20.10 Uniform<br>Regulations for the Control of Drainage; Title<br>19.060.040(F) and Title 19.08.040(F) for<br>Landscaping and Low Impact Development;<br>Title 19.09.080 Open Space Standards; Title<br>19.10.140 Hillside Overlay; 2050 Master Plan<br>(Land Use/Density/Rural Land Overlay); and<br>Special Area Plans. | Yes                           | LVMC 14.11 Water Conservation<br>was adopted by City Council on<br>08/16/23 |

# Table 4-1: Las Vegas Valley MS4 Permittees' Local Stormwater Ordinances and Status of Revisions to Ordinances



| Table 4-1: Las Vegas Valley MS4 Permittees' Local Stormwater Ordinances and Status of |  |
|---------------------------------------------------------------------------------------|--|
| Revisions to Ordinances                                                               |  |

| Municipal<br>Permittee     | Local Stormwater Ordinance(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Annual<br>Review<br>Performed | Revisions to Ordinances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| City of North Las<br>Vegas | Chapter 8.50 of the City of North Las Vegas<br>Municipal Code (NLVMC): Stormwater<br>Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                           | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Clark County               | Title 24, Chapter 24.40 Storm Sewer System<br>Discharge / Other related ordinances include:<br>9.08 - Air Quality & Environmental<br>Management, 10.36 - Animals, noise, waste,<br>restraint, sanitation & dead animals, 10.40 -<br>Enforcement, 11 - Abatement and Nuisances,<br>Title 22 – Building and Construction,<br>22.02.492 - Storm sewer system inspections,<br>25.10 – Building Water Conservation, 25.20 –<br>The Energy Conservation, Title 30 – Open<br>Space Requirements including, 30.20.110 -<br>Document Submittal Requirements, 30.24.080<br>– Design Standards and Guidelines,<br>30.24.090 – Special Development Standards,<br>30.32.040 – Grading Permits, 30.32.080 –<br>Improvement Plans, 30.52 - Off-Site<br>Development Requirements, 30.52.050 –<br>Improvement Standards, 30.56 –<br>Development Standards, 30.56.085 - Energy<br>Efficient Lot Configuration and Building<br>Orientation, 30.56.100 – Hillside<br>Development, 30.60.050 - Design and Layout<br>of Parking, 30.64 - Site Landscape and<br>Screening Standards. Regional Flood<br>Control District's (RFCD) Hydrologic Criteria<br>and Drainage Design Manual (HCDDM). | Yes                           | A revision of Title 30 was completed<br>and released on January 1, 2024.<br>Title 30 Open Space Landscaping –<br>Increased requirements for street<br>and parking lot trees; Turf is only<br>permissible for parks, cemeteries,<br>and schools; Native plants, 10%<br>more trees, & Water efficient<br>landscaping requirements;<br>Commercial and industrial line<br>signoff for the Landscaping<br>Certificate; Added a Landscaping<br>Installation Guide with information<br>about stormwater BMPs.<br>Title 30 New LID or LEED<br>requirements –<br>70% roof and 50% parking solar;<br>Cool roofs; On-site solar to generate<br>100% of project's estimated annual<br>electricity use; Battery backup for<br>critical loads or offset peak grid<br>demand; Low emissivity glass. |
|                            | Ordinances provide legal authority to Permittees to conduct SWMP activ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SWMP Target                | Ordinances reviewed annually<br>New or modified ordinances adopted within 12 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### 4.2 Compliance and Enforcement

Each Permittee requires compliance with its stormwater ordinances and regulations, as it does with all local jurisdiction ordinances. The public and business communities are made aware of local stormwater regulations through a variety of outreach measures, including the Las Vegas Valley NPDES MS4 Permit Public Outreach and Education Program (described in Section 8.0 of this Annual Report). Local ordinances and individual standard operating procedures regarding enforcement were reviewed by each Permittee during the permit year.

Regular inspection and monitoring procedures used by the Permittees to track compliance with stormwater ordinances prohibiting illegal dumping and discharges to the MS4 are presented in Section 9.0 and Section 11.0 of this Annual Report. Inspection and monitoring procedures used to track compliance with stormwater ordinances specifically related to industrial sites and construction activities are presented in Section 12.0 and Section 13.0 of this Annual Report, respectively.

Stormwater inspectors, law enforcement officers, code enforcement officers, and / or pretreatment officials for the Cities and Clark County have the legal authority to enforce their jurisdiction's



stormwater ordinances and other regulations. Municipal/County codes describe enforcement measures that are applied to violators of stormwater ordinances and regulations. Enforcement responses vary in severity from verbal warnings up to fines or judicial actions. The Southern Nevada Health District (SNHD) also enforces ordinances prohibiting dumping of solid waste, semisolid waste, liquid waste, and sewage to the Las Vegas Valley MS4. Members of the SQMC work together to coordinate cross-jurisdictional cooperation and compliance with all stormwater ordinances.



# Section 5

Stormwater Management Approach



### 5 Stormwater Management Approach

The Las Vegas Valley NPDES MS4 Permit requires the Permittees to develop a Stormwater Management Plan (SWMP) that is suited to the unique local hydrologic, hydrogeologic, and regional conditions of the Las Vegas Valley. The SWMP is consistent with local and state laws, regulations, and water resources plans. The Las Vegas Valley SWMP that applies to the 2023-2024 MS4 permit year was approved by NDEP on November 1, 2011 and was implemented in November 2013. A copy of the current SWMP is provided at <u>www.LVstormwater.com</u>.

The Las Vegas Valley SWMP is uniquely tailored to local conditions and relies on a regional management approach. The SWMP framework utilizes common stormwater treatment train principles, which include progressively applied layers of controls from pollution prevention, onsite controls, maintenance measures, and treatment control. The Las Vegas Valley SWMP framework is outlined in Section 3.3 of the SWMP.

### 5.1 Overview of Best Management Practices

The SWMP provides details on the BMPs that were adopted by the Permittees to address permit requirements. Many BMPs provide benefits to multiple NPDES MS4 programs. However, to simplify tracking and reporting for the SWMP and this Annual Report, BMPs that may provide benefits to multiple programs were only assigned to one. This program was determined based on the primary benefits that these BMPs provide. BMPs implemented in each program to comply with permit requirements are shown in Table 5-1.



### Table 5-1: Best Management Practices Organized by Las Vegas Valley Stormwater Management Plan Program

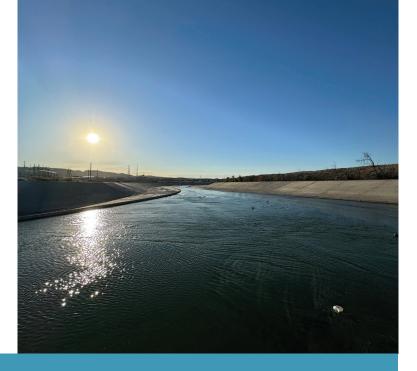
|                         |        |                                                                       |                                          | Stormw                                           | vater Mar                             | nagement                                     | Plan Prog                                                | ram                          |                   |
|-------------------------|--------|-----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------|-------------------|
| Туре                    | ID No. | Best Management Practices                                             | Public Outreach and<br>Education Program | Source Control and<br>MS4 Maintenance<br>Program | Post-Construction<br>Program for NDSR | Illicit Discharge and<br>Elimination Program | Industrial Facility<br>Monitoring and<br>Control Program | Construction Site<br>Program | Watershed Program |
|                         | MM-1   | Street Sweeping                                                       |                                          | Х                                                |                                       |                                              |                                                          |                              |                   |
| Maintenance<br>Measures | MM-2   | Local Storm Drain System<br>Maintenance                               |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
| Mainte<br>Meas          | MM-3   | Regional Detention Basin<br>Maintenance                               |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
|                         | MM-4   | Maintenance of Public Facilities                                      |                                          | Х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-1   | Water Conservation (Drought)<br>Ordinance                             |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-2   | Turf Conversion Program                                               |                                          | Х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-3   | Public Employee Supervisor<br>Fertilizer/ Pesticide Training          |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-4   | Use of Alternate Products and<br>Application Procedures               |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-5   | Household Hazardous Waste<br>Collection                               |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-6   | Commercial / Industrial<br>Housekeeping Practices                     |                                          |                                                  |                                       |                                              | х                                                        |                              |                   |
| Source Control          | SC-7   | Ordinances Prohibiting Non-<br>Stormwater Discharges and<br>Littering |                                          | х                                                |                                       |                                              |                                                          |                              |                   |
| Ce                      | SC-8   | Desert Dumping Controls                                               |                                          | Х                                                |                                       |                                              |                                                          |                              |                   |
| Sou                     | SC-9   | Grease Interceptor Program                                            |                                          |                                                  |                                       |                                              | Х                                                        |                              |                   |
|                         | SC-10  | Dust Control Measures                                                 |                                          | Х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-11  | Storm Drain Marking Program                                           | Х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                         | SC-12  | Spill Control Prevention Plan                                         |                                          |                                                  |                                       | Х                                            |                                                          |                              |                   |
|                         | SC-13  | Industrial Pretreatment Program                                       |                                          |                                                  |                                       |                                              | Х                                                        |                              |                   |
|                         | SC-14  | Trash Receptacle Enclosures                                           |                                          | Х                                                |                                       |                                              |                                                          |                              |                   |
|                         | SC-15  | Southern Nevada Health District<br>Inspections                        |                                          |                                                  |                                       |                                              | х                                                        |                              |                   |
|                         | SC-16  | Regional Water Quality Planning                                       |                                          |                                                  |                                       | Х                                            |                                                          |                              |                   |
|                         | SC-17  | Pet Waste Management                                                  | Х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                         | SC-18  | Stormwater Outfall Map                                                |                                          |                                                  | Х                                     |                                              |                                                          |                              |                   |

Note: Cells marked with an "X" indicate the primary program that utilizes the identified BMP. However, the BMP may also be utilized by other MS4 Management Plan Programs.



## Table 5-1: Best Management Practices Organized by Las Vegas Valley Stormwater Management Plan Program

| l.             |        |                                                        |                                          | Stormw                                           | vater Mar                             | agement                                      | Plan Prog                                                | ram                          |                   |
|----------------|--------|--------------------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------|-------------------|
| Туре           | ID No. | Best Management Practices                              | Public Outreach and<br>Education Program | Source Control and<br>MS4 Maintenance<br>Program | Post-Construction<br>Program for NDSR | Illicit Discharge and<br>Elimination Program | Industrial Facility<br>Monitoring and<br>Control Program | Construction Site<br>Program | Watershed Program |
|                | SC-19  | Sanitary Sewer Line Inspection and Replacement Program |                                          |                                                  |                                       | х                                            |                                                          |                              |                   |
|                | SC-20  | Construction Site BMP<br>Guidance Manual               |                                          |                                                  |                                       |                                              |                                                          | Х                            |                   |
|                | SC-21  | Construction Site Inspections                          |                                          |                                                  |                                       |                                              |                                                          | Х                            |                   |
|                | SC-22  | Construction Site Training<br>Workshops                |                                          |                                                  |                                       |                                              |                                                          | Х                            |                   |
|                | SC-23  | Industrial Facility Stormwater<br>Inspections          |                                          |                                                  |                                       |                                              | х                                                        |                              |                   |
|                | SC-24  | Industrial Facility Stormwater<br>Inventory            |                                          |                                                  |                                       |                                              | х                                                        |                              |                   |
| 0              | SC-25  | Industrial Facility Stormwater<br>Inspection Checklist |                                          |                                                  |                                       |                                              | х                                                        |                              |                   |
| Source Control | SC-26  | Storm Channel Inspections                              |                                          |                                                  |                                       | Х                                            |                                                          |                              |                   |
| Lce (          | SC-27  | Dry Weather Monitoring                                 |                                          |                                                  |                                       | х                                            |                                                          |                              |                   |
| Sou            | SC-28  | Industrial Facility Inspector<br>Training Workshops    |                                          |                                                  |                                       |                                              | х                                                        |                              |                   |
|                | SC-29  | Stormwater-Related Complaint<br>Response               |                                          |                                                  |                                       | х                                            |                                                          |                              |                   |
|                | SC-30  | LVV Stormwater Quality Website                         | Х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                | SC-31  | Public Outreach Events                                 | Х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                | SC-32  | Elementary School<br>Presentations                     | х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                | SC-33  | Public Service Announcements /<br>Flood Channel        | х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                | SC-34  | Brochures and Printed Material                         | Х                                        |                                                  |                                       |                                              |                                                          |                              |                   |
|                | SC-35  | Stormwater Outfall Map with<br>Areas of NDSR           |                                          |                                                  | Х                                     |                                              |                                                          |                              |                   |
| Design         | SD-1   | Open Space and Landscaping<br>Objectives               |                                          |                                                  | Х                                     |                                              |                                                          |                              |                   |
| Des            | SD-2   | Rural Land Overlay                                     |                                          |                                                  | Х                                     |                                              |                                                          |                              |                   |
| Site           | SD-3   | Hillside Development<br>Ordinances                     |                                          |                                                  | х                                     |                                              |                                                          |                              |                   |


Note: Cells marked with an "X" indicate the primary program that utilizes the identified BMP. However, the BMP may also be utilized by other MS4 Management Plan Programs.



### Table 5-1: Best Management Practices Organized by Las Vegas Valley Stormwater Management Plan Program

|                   |        |                                                      |  | Stormw                                           | ater Mar                              | nagement                                     | Plan Prog                                                | ram                          |                   |
|-------------------|--------|------------------------------------------------------|--|--------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------|-------------------|
| Туре              | ID No. | o. Best Management Practices                         |  | Source Control and<br>MS4 Maintenance<br>Program | Post-Construction<br>Program for NDSR | Illicit Discharge and<br>Elimination Program | Industrial Facility<br>Monitoring and<br>Control Program | Construction Site<br>Program | Watershed Program |
|                   | SD-4   | Sustainability and Green<br>Building Initiatives     |  |                                                  | х                                     |                                              |                                                          |                              |                   |
|                   | SD-5   | Covered Fuel Areas                                   |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| c                 | SD-6   | Raised Fuel Areas                                    |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| Design            | SD-7   | Emergency Shut-Off Switch and Shear Valve            |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| Site              | SD-8   | Standard Drainage Design<br>Criteria                 |  |                                                  | х                                     |                                              |                                                          |                              |                   |
|                   | SD-9   | Parking Lot Low Impact<br>Development (LID) Measures |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
|                   | SD-10  | LID Measures                                         |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
|                   | TC-1   | Regional Detention Basins                            |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| ō                 | TC-2   | Regional Channel Lining                              |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| Treatment Control | TC-3   | Las Vegas Wash Stabilization<br>Structures           |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| tmen              | TC-4   | Sand / Oil Separator                                 |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
| [reat             | TC-5   | Sand Filter                                          |  |                                                  | Х                                     |                                              |                                                          |                              |                   |
|                   | TC-6   | Regional Detention Basin<br>Retrofit                 |  |                                                  | х                                     |                                              |                                                          |                              |                   |

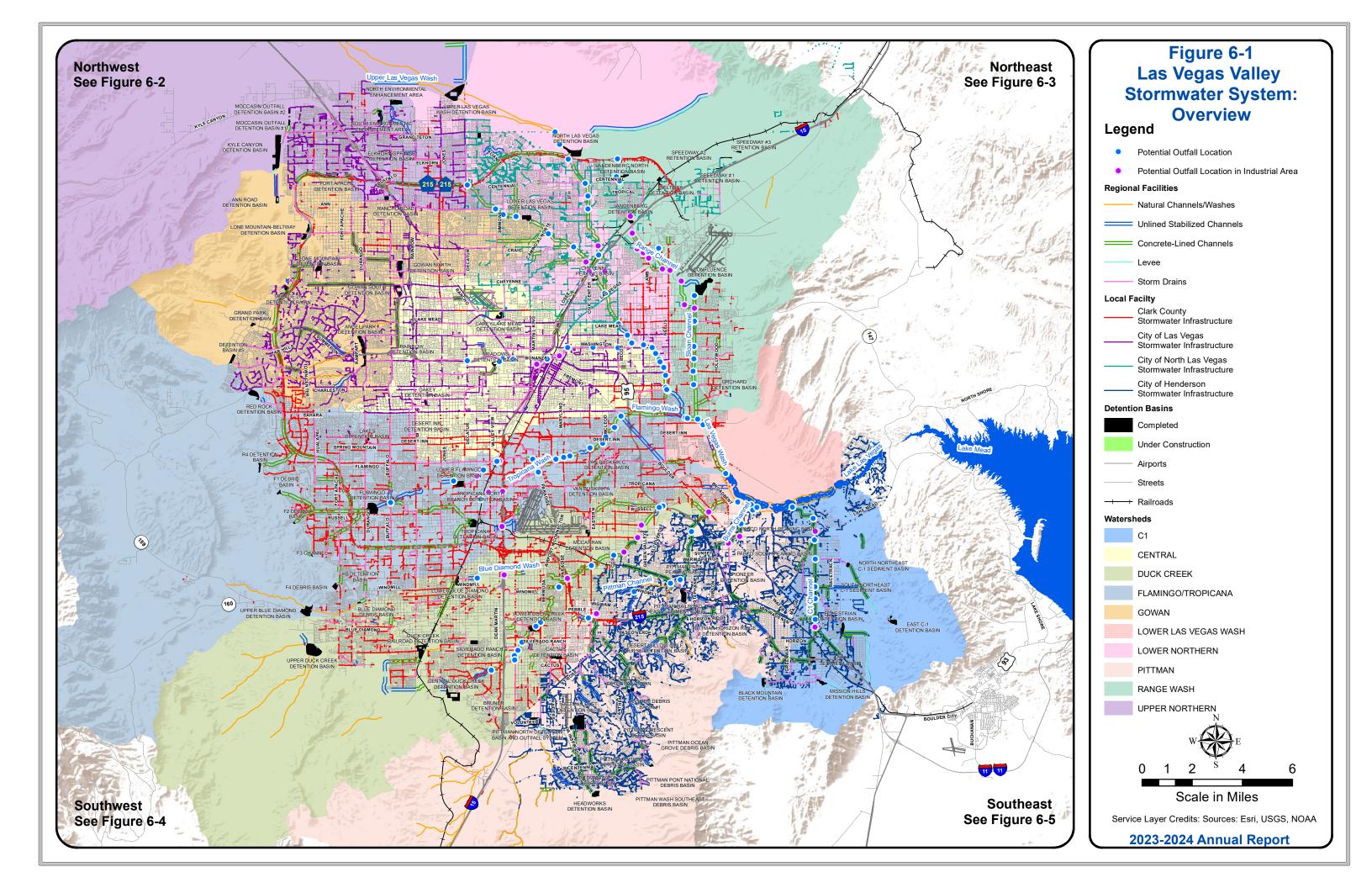
Note: Cells marked with an "X" indicate the primary program that utilizes the identified BMP. However, the BMP may also be utilized by other MS4 Management Plan Programs.



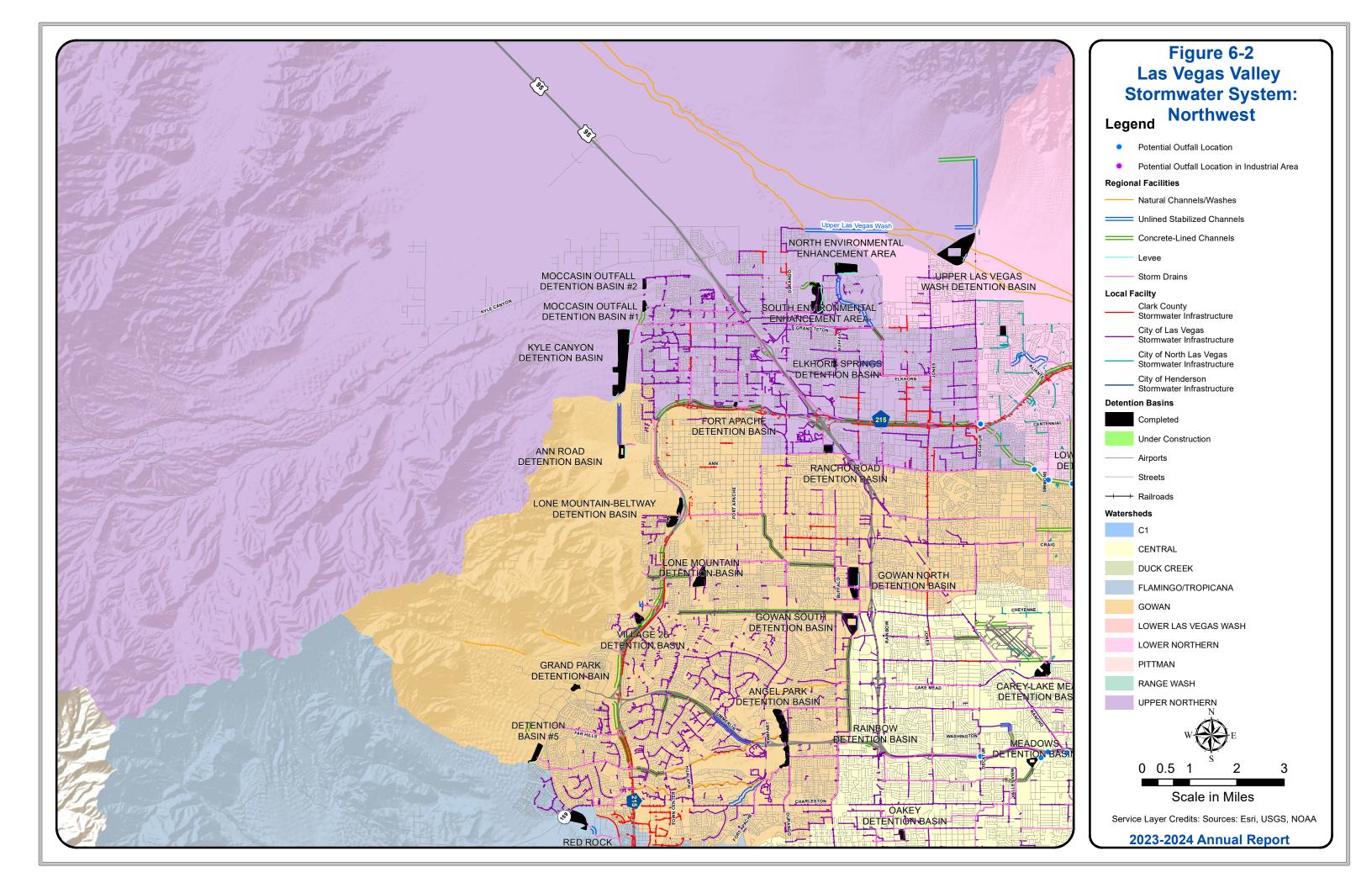
# Section 6

Source Identification

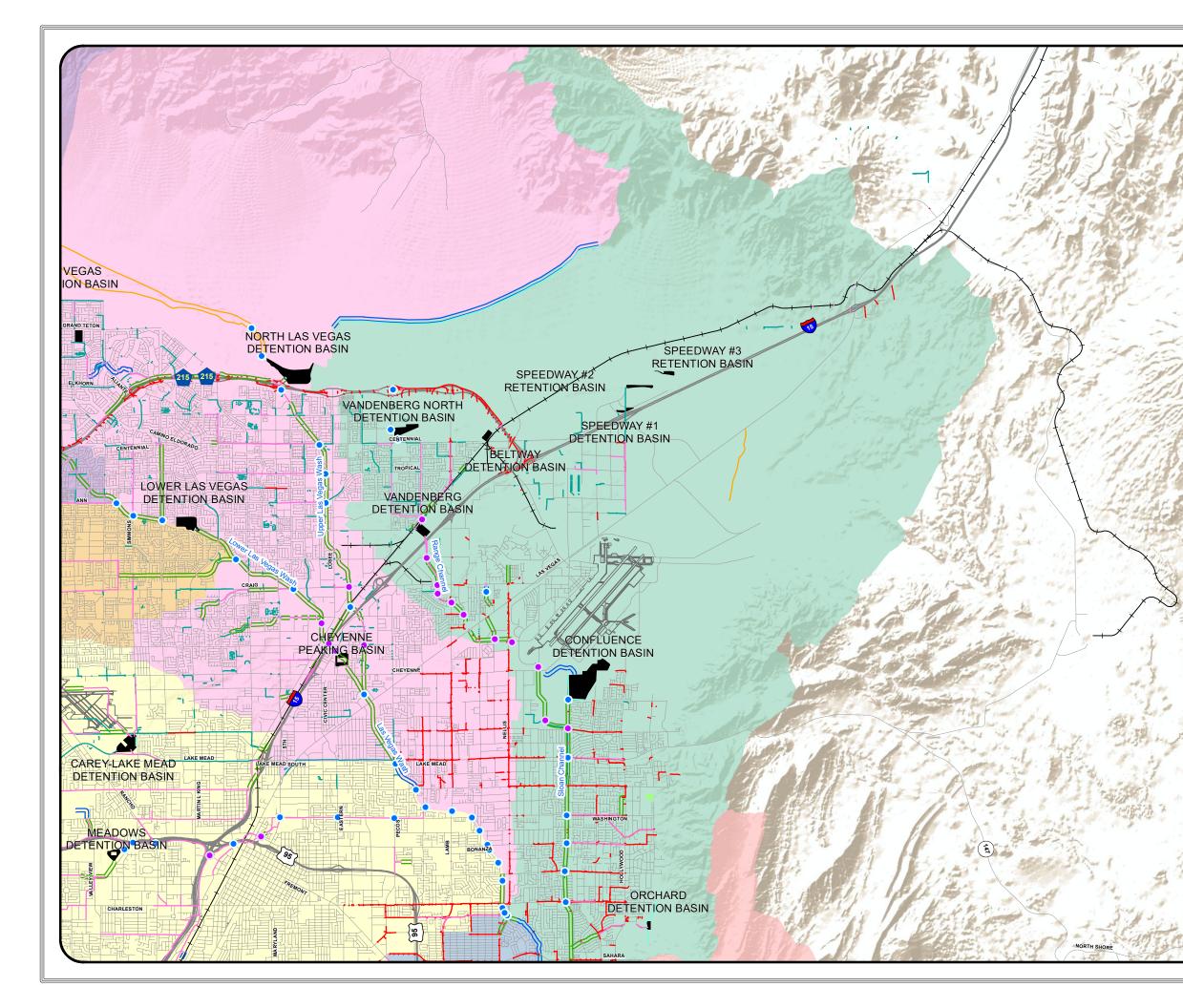


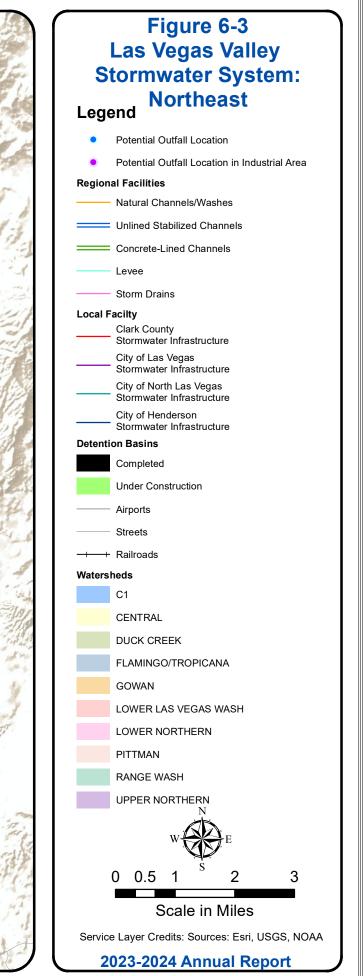

### 6 Source Identification

Section B.5.2 of the Las Vegas Valley NPDES MS4 Permit requires the preparation of a map of the existing regional storm drain system to depict major stormwater outfalls in the area of coverage. During the permit year, the stormwater system map was updated to assist Permittees, regulatory agencies, and others in determining where potential stormwater quality problems may exist or originate. The map is based on existing computerized inventory information from the Permittees that defines the existing drainage and flood control system.

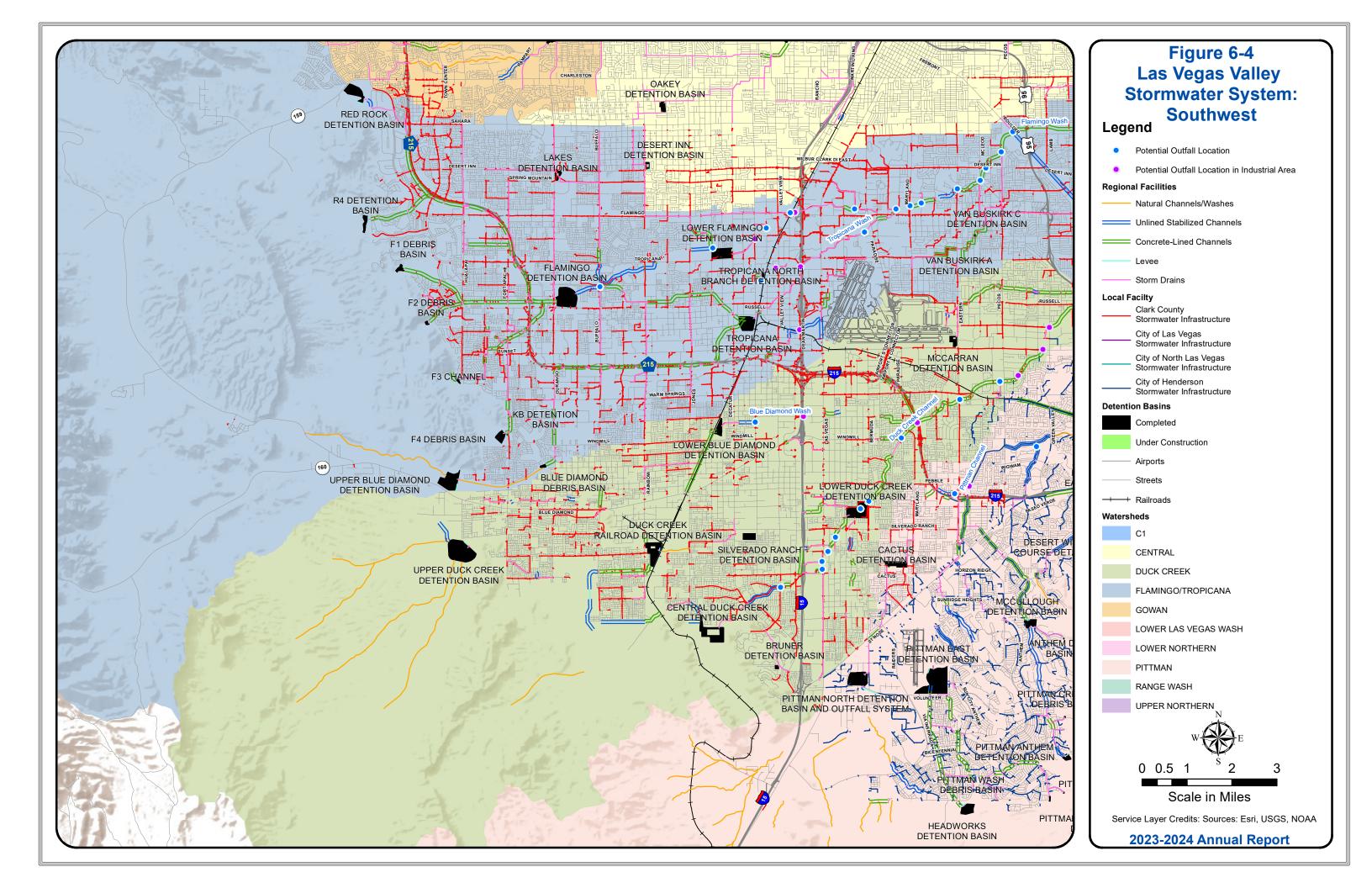

The map was prepared using regional information from the CCRFCD Geographic Information System (GIS), which was developed for the Las Vegas Valley Master Plan Update, as well as GIS data available from the individual Permittees. The stormwater system map depicts changes resulting from new development and updates to the flood control infrastructure. Locations of regional detention basins (constructed and under construction), channels (lined and unlined), washes, and outfall locations for the Las Vegas Valley stormwater system are shown in Figure 6-1.

To provide more detail, Figure 6-2 through Figure 6-5 depict sectional areas of the Las Vegas Valley (northwest, northeast, southwest, and southeast, respectively). The overall stormwater system map meets the permit requirements for source identification of major outfalls that discharge into waters of the United States.

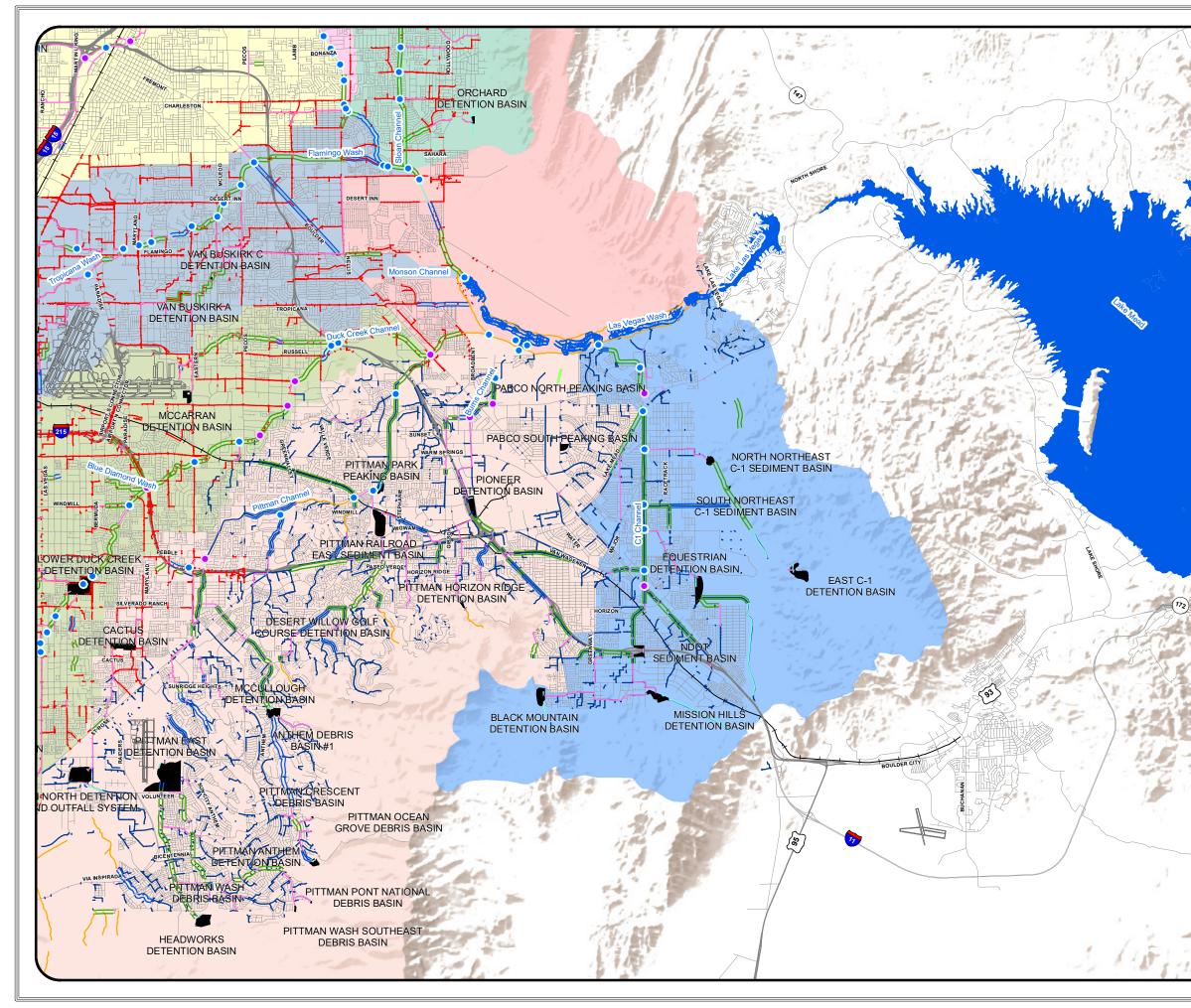




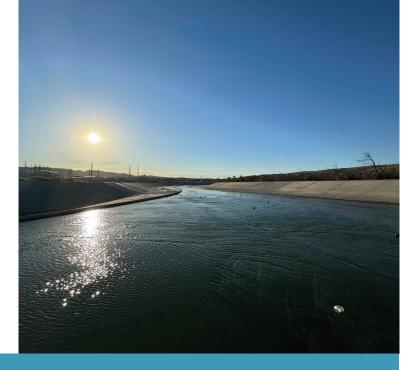





















# Section 7

Stormwater Monitoring Program

**7** STORMWATER MONITORING PROGRAM



2023-2024 Annual Report Municipal Separate Storm Sewer System Permit

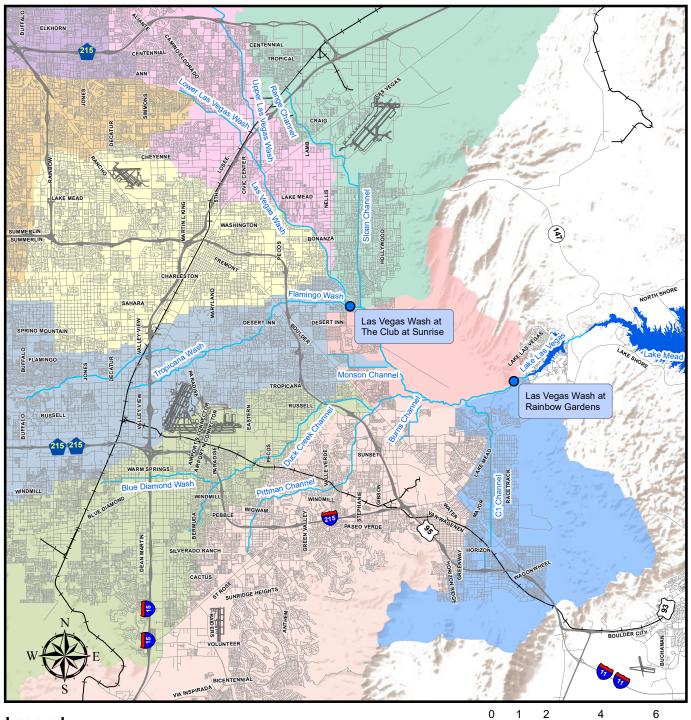


Section B.6.1 of the NPDES MS4 Permit for the Las Vegas Valley describes the requirements for a monitoring program, which includes the evaluation of available water quality characterization data for the permit area. Sections B.6.3.3.5 and B.6.3.3.6 include additional requirements for reporting on the monitoring program. This section of the Annual Report includes data collected from the Wet Weather (Stormwater) Monitoring Program, as required by the MS4 permit year 2023-2024.

### 7.1 Wet Weather Monitoring

Wet weather (stormwater) monitoring for the Las Vegas Valley NPDES MS4 Permit has two primary objectives:

- 1. To characterize the water quality of stormwater discharges.
- 2. To assess the appropriateness of existing BMPs.


#### 7.1.1 Wet Weather Sampling Procedures

The wet weather monitoring program for MS4 permit year 2023-2024 followed the same protocols used in previous years. All samples were properly preserved and analyzed using approved methods in accordance with 40 CFR 136 and were analyzed within the maximum allowable holding times. Sampling is conducted at the following locations, as displayed in Figure 7-1:

- Las Vegas Wash at The Club at Sunrise (The Club at Sunrise)
- Las Vegas Wash at Rainbow Gardens (Rainbow Gardens)

The wet weather sampling procedure for the 2023-2024 MS4 permit year included collecting three samples per year, with a maximum of ten samples per year weather dependent, from each of the two sample sites during significant storm events. A significant storm event was defined as having a total rainfall depth of 0.16 inches at any rain gauge within the drainage area tributary to a monitoring station. To generate sufficient runoff for sampling, a storm depth of at least 0.16 inches was required, based on past experience. The sampling team used both the CCRFCD website (https://www.regionalflood.org) and the USGS website

(http://waterdata.usgs.gov/nv/nwis/current/?type=flow) to view rainfall maps and stream gauge water levels in the Las Vegas Valley in real time. This data helped determine if the storm was likely to meet the stormwater sampling criteria. During the 2023-2024 MS4 permit year this level of rain event occurred one time at The Club at Sunrise site and the Rainbow Gardens site. Sampling crews were mobilized when available data indicated the potential for runoff producing storm events. Storm events of a significant size trigger the actuators, installed at both sampling sites, to collect samples.



#### Legend

- Wet Weather Sampling Point Watersheds
- —— Airports
- ----- Streets
- -+--+ Railroads
- Lakes
- ----- Washes

CENTRAL DUCK CREEK FLAMINGO/TROPICANA GOWAN LOWER LAS VEGAS WASH LOWER NORTHERN PITTMAN RANGE WASH UPPER NORTHERN

C1

Scale in Miles

Service Layer Credits: Sources: Esri, USGS, NOAA

Figure 7-1 Wet Weather Monitoring Sites 2023-2024 Annual Report



The collected stormwater samples were brought back to the in-office laboratory for preparation. Composite samples were prepared for each site by either combining approximately equal volumes from each bottle, where variable stormwater volumes were included in the composite sample. For each sample in the 2023-2024 MS4 permit year, composite samples were prepared, and volumes were individually extracted into laboratory sample bottles and preserved, according to laboratory/method requirements. Samples were then delivered to Silver State Analytical Laboratories, a laboratory certified by the State of Nevada for each constituent analyzed.

### 7.1.2 Wet Weather Constituents

The wet weather program identified two separate suites of constituents for laboratory analysis – the "long list" and a condensed "short list". The "long list" of constituents is analyzed for the first three storm events of each permit year, and the "short list" is analyzed for any remaining sampling events. The constituents for the 2023-2024 MS4 permit year are shown in Table 7-1. The "short list" of constituents is included in the table and are indicated in bold text.

|                           | Constituents Analyzed                                                                                                                                          |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 8260B                     | 2-chloroethyl vinyl ether                                                                                                                                      |  |  |  |
| SM 2320B                  | Alkalinity, bicarbonate, carbonate                                                                                                                             |  |  |  |
| SM 4500NH3D               | Ammonia                                                                                                                                                        |  |  |  |
| SM 5210B                  | Biological Oxygen Demand (BOD)                                                                                                                                 |  |  |  |
| 531 / 632                 | Carbamate pesticides                                                                                                                                           |  |  |  |
| SM 5220D                  | Chemical Oxygen Demand (COD)                                                                                                                                   |  |  |  |
| SM 4500CNE                | Cyanide                                                                                                                                                        |  |  |  |
| SM 2510B                  | Electrical conductivity                                                                                                                                        |  |  |  |
| SM 9223B                  | E. Coli                                                                                                                                                        |  |  |  |
| Colilert-18               | Fecal coliform                                                                                                                                                 |  |  |  |
| Enterolert                | Fecal Streptococcus                                                                                                                                            |  |  |  |
| SM 2340B                  | Hardness                                                                                                                                                       |  |  |  |
| 8151A                     | Herbicides                                                                                                                                                     |  |  |  |
| 200.7                     | Magnesium, sodium, iron, aluminum                                                                                                                              |  |  |  |
| SM 5540C                  | Methylene Blue Active Substances (MBAS) (Surfactants)                                                                                                          |  |  |  |
| 245.2                     | Mercury                                                                                                                                                        |  |  |  |
| 300                       | Nitrate-N, nitrite-N, bromide, sulfate, fluoride                                                                                                               |  |  |  |
| 1664A                     | Oil and grease                                                                                                                                                 |  |  |  |
| 525.2, 531.2, 551.1, 556, | Organics                                                                                                                                                       |  |  |  |
| 625, 8081A, 8082, 8270D   |                                                                                                                                                                |  |  |  |
| 556                       | Pesticides, volatile organic compounds                                                                                                                         |  |  |  |
| SM 4500-HB                | рН                                                                                                                                                             |  |  |  |
| 200.8                     | Selenium, selenium (dissolved), antimony, barium, beryllium, boron, cadmium, chromium, copper, copper (dissolved), lead, lead (dissolved), arsenic, manganese, |  |  |  |
|                           | nickel, silver, thallium, <b>zinc, zinc (dissolved)</b>                                                                                                        |  |  |  |
| SM 5540C, 425.1           | Surfactants                                                                                                                                                    |  |  |  |
| SM 2540C                  | TDS                                                                                                                                                            |  |  |  |
| Thermal Analysis          | Temperature                                                                                                                                                    |  |  |  |
| SM 5310C, 415.3           | Total Organic Carbon (TOC)                                                                                                                                     |  |  |  |
| Calculation               | Total Organic Nitrogen (TON)                                                                                                                                   |  |  |  |
| SM 4500NorgC              | Total Kjeldahl Nitrogen (TKN)                                                                                                                                  |  |  |  |
| SM 4500PE                 | Total phosphorous-P, orthophosphate-P                                                                                                                          |  |  |  |
| SM 2540D                  | TSS                                                                                                                                                            |  |  |  |
| SM 2130B                  | Turbidity                                                                                                                                                      |  |  |  |

Table 7-1: Constituents and Analytical Methods in Wet Weather Samples for the CurrentMS4 Permit Year (2023-2024)

Note: Bold text indicates a constituent that is also part of the "short list" of wet weather constituents.



### 7.1.3 Wet Weather Monitoring Results

During the 2023-2024 MS4 permit year, one significant storm event occurred, leading to one sample collection from the sampling locations. The samples were collected with automated samplers and composite samples were prepared for laboratory analysis.

The laboratory analyzed the "long list" of constituents for the storm event of the MS4 permit year, as shown in Table 7-2. Wet weather sampling reports for the significant storm events and historic wet weather sampling data are included in Appendix A.

| Table 7-2: Wet Weather Samplin  | g Events for the Current MS4 Permit Year (2023-2024)  |
|---------------------------------|-------------------------------------------------------|
| Table 1-2. Wet Weather Sampling | g Evenus for the Current W34 Fernilt Tear (2023-2024) |

| Sampling Location   | "Long List" Constituents Analyzed |
|---------------------|-----------------------------------|
| The Club at Sunrise | 09/01/2023                        |
| Rainbow Gardens     | 09/01/2023                        |

Table 7-3 and Table 7-4 present wet weather monitoring data collected in the 2023-2024 MS4 permit year for both The Club at Sunrise and Rainbow Gardens sampling locations, respectively. Table 7-5 and Table 7-6 further identify the detections of organic compounds for the current MS4 permit year and the prior three MS4 permit years for The Club at Sunrise and Rainbow Gardens, in stormwater samples. Data was consistent with the previously collected wet weather characterization data.

#### Table 7-3: The Club at Sunrise Wet Weather Monitoring Constituent Data for the Current MS4 Permit Year (2023-2024)

| Parameter Units                                     |                  | 01-September-2023 Median 2023-2024 <sup>a</sup> |                               | Historical Median 1997-2024 | Historical Range 1997-2024 |   |           |
|-----------------------------------------------------|------------------|-------------------------------------------------|-------------------------------|-----------------------------|----------------------------|---|-----------|
|                                                     |                  | NP                                              | DES Constituents <sup>b</sup> |                             |                            |   |           |
| Oil and Grease - Gravimetric                        | mg/L             | 10.0                                            | 10.0                          | < 5                         | < 2.4                      | - | 1,180     |
| Total Dissolved Solids (TDS)                        | mg/L             | 93.3                                            | 93.3                          | 531                         | 93                         | - | 2,500     |
| Total Suspended Solids (TSS)                        | mg/L             | 867                                             | 867                           | 860                         | 18                         | - | 8,350     |
| Total Phosphorus-P                                  | mg/L             | 2.04                                            | 2.04                          | 1.07                        | 0.17                       | - | 3.9       |
| Orthophosphate-P                                    | mg/L             | 1.54                                            | 1.54                          | 0.18                        | < 0.01                     | - | 1.54      |
| Nitrite, Nitrogen by IC                             | mg/L             | < 0.1 ND                                        | < 0.1 ND                      | < 0.10                      | < 0.089                    | - | 6.5       |
| Nitrate-N by IC                                     | mg/L             | 1.05                                            | 1.05                          | 1.30                        | < 0.1                      | - | 165       |
| Total Kjeldahl Nitrogen (TKN)                       | mg/L             | 3.66                                            | 3.66                          | 4.50                        | < 0.2                      | - | 28.0      |
| Copper, Total, ICAP                                 | mg/L             | 0.043                                           | 0.043                         | 0.043                       | 0.005                      | - | 0.69      |
| Lead, Total, ICAP                                   | mg/L             | 0.028                                           | 0.028                         | 0.023                       | < 0.0005                   | - | 0.18      |
| Zinc, Total, ICAP                                   | mg/L             | 0.29                                            | 0.29                          | 0.20                        | 0.01                       | - | 4.6       |
| Copper, ICAP, Dissolved                             | mg/L             | 0.003                                           | 0.003                         | 0.008                       | < 0.002                    | - | 0.11      |
| Lead, ICAP, Dissolved                               | mg/L             | < 0.003                                         | < 0.001 ND                    | < 0.0005                    | < 0.0002                   | - | < 0.1     |
|                                                     | - · ·            | < 0.01 ND                                       | < 0.01 ND                     | < 0.024                     | < 0.0003                   |   | 0.4       |
| Zinc, ICAP, Dissolved                               | mg/L             |                                                 |                               |                             |                            | - |           |
| Boron, Total, ICAP                                  | mg/L             | 0.10                                            | 0.10                          | 0.21                        | < 0.02                     | - | 0.84      |
| Turbidity                                           | NTU              | 731                                             | 731                           | 443                         | 28                         | - | 5,200     |
| Temperature                                         | Thermal Analysis | 27.3                                            | 27.3                          | 22.3                        | 12.0                       | - | 27.3      |
| Fecal Coliform Bacteria                             | MPN/100mL        | > 241,960                                       | > 241,960                     | 58,850                      | 130                        | - | 160,000,0 |
| Fecal Streptococci                                  | MPN/100mL        | 23,820                                          | 23,820                        | 23,820                      | < 1                        | - | 3,300,00  |
| E. Coli                                             | MPN/100mL        | 32,600                                          | 32,600                        | 102,300                     | 32,600                     | - | 172,000   |
| Semivolatile Organic Compounds (SVOCs) <sup>c</sup> | No. of Detects   | 0                                               | 0                             | 2                           | 0                          | - | 7         |
| Volatile Organic Compounds (VOCs) $^{\circ}$        | No. of Detects   | 1                                               | 1                             | 2                           | 0                          | - | 14        |
| Pesticides <sup>c</sup>                             | No. of Detects   | 0                                               | 0                             | 0                           | 0                          | - | 5         |
| Herbicides <sup>c</sup>                             | No. of Detects   | 0                                               | 0                             | 1                           | 0                          | - | 4         |
|                                                     |                  | Expa                                            | ansion Constituents           |                             |                            |   |           |
| Alkalinity as CaCO <sub>3</sub>                     | mg/L             | 228                                             | 228                           | 102                         | 51                         | - | 960       |
| Aluminum, Total, ICAP                               | mg/L             | 14.1                                            | 14.1                          | 5.09                        | 0.0113                     | - | 56        |
| Antimony, Total, ICAP                               | mg/L             | 0.0036                                          | 0.0036                        | 0.0039                      | < 0.001                    | - | 0.1       |
| Arsenic, Total, ICAP                                | mg/L             | 0.0081                                          | 0.0081                        | 0.0078                      | 0.0014                     | - | 0.046     |
| Barium, Total, ICAP                                 | mg/L             | 0.265                                           | 0.265                         | 0.215                       | 0.058                      | - | 1.8       |
| Beryllium, Total, ICAP                              | mg/L             | < 0.001 ND                                      | < 0.001 ND                    | < 0.001                     | < 0.001                    | - | < 0.01    |
| Bicarbonate Alkalinity as HCO <sub>3</sub>          | mg/L             | 228                                             | 228                           | 124                         | 51                         | - | 960       |
| BOD                                                 | mg/L             | < 20 ND                                         | < 20 ND                       | 32.3                        | < 2                        | - | 263       |
| Bromide                                             | mg/L             | < 0.05 ND                                       | < 0.05 ND                     | 0.05                        | < 0.005                    | - | 0.53      |
| Carbonate, Calculated                               | mg/L             | < 5.00 ND                                       | < 5.00 ND                     | < 2.00                      | < 0.028                    | - | < 10.0    |
| Cadmium, Total, ICAP                                | μg/L             | < 1.0 ND                                        | < 1.0 ND                      | < 1.0                       | < 0.5                      |   | 6.9       |
| Chloride                                            | mg/L             | 9.5                                             | 9.5                           | 34.8                        | 5.86                       | - | 266       |
| Chromium, Total, ICAP                               | ¥                | 0.0242                                          | 0.0242                        | 0.0145                      | < 0.0001                   |   | 15.0      |
|                                                     | mg/L             |                                                 |                               |                             |                            | - |           |
| COD                                                 | mg/L             | 251                                             | 251                           | 178                         | < 38.6                     | - | 990       |
| Fluoride                                            | mg/L             | < 0.1 ND                                        | < 0.1 ND                      | 0.315                       | 0.076                      | - | 1.08      |
| Hardness as CaCO <sub>3</sub>                       | mg/L             | 715                                             | 715                           | 715                         | 101                        | - | 5,600     |
| Hydroxide as OH <sup>-</sup> , Calc                 | mg/L             | < 5.00 ND                                       | < 5.00 ND                     | < 2.00                      | 0.001                      | - | 13.0      |
| Iron, Total, ICAP                                   | mg/L             | 12.3                                            | 12.3                          | 8.55                        | 0.018                      | - | 100       |
| Magnesium, Total, ICAP                              | mg/L             | 45.7                                            | 45.7                          | 46                          | 6.2                        | - | 490       |
| Manganese, Total, ICAP                              | mg/L             | 0.31                                            | 0.31                          | 0.25                        | 0.03                       | - | 2.4       |
| Mercury                                             | mg/L             | < 0.00032 ND                                    | < 0.00032 ND                  | < 0.0002                    | < 0.00016                  | - | 0.00506   |
| Nickel, Total, ICAP                                 | mg/L             | 0.0176                                          | 0.0176                        | 0.0192                      | 0.0038                     | - | 0.14      |
| pH, Lab                                             | Standard Units   | 8.18                                            | 8.18                          | 7.58                        | 5.92                       | - | 8.57      |
| Selenium, Total                                     | mg/L             | 0.0011                                          | 0.0011                        | < 0.005                     | < 0.001                    | - | < 0.05    |
| Selenium, Dissolved                                 | mg/L             | < 0.001 ND                                      | < 0.001 ND                    | < 0.001                     | 0.0005                     | - | < 0.002   |
| Silver, Total, ICAP                                 | mg/L             | < 0.001 ND                                      | < 0.001 ND                    | < 0.0005                    | < 0.0005                   | - | < 0.005   |
| Sodium, Total, ICAP                                 | mg/L             | 9.7                                             | 9.7                           | 36.1                        | 6.5                        | - | 1,020     |
| Sulfate                                             | mg/L             | 41.9                                            | 41.9                          | 165                         | 19                         | - | 1,020     |
| Surfactants                                         | mg/L             | 0.31                                            | 0.31                          | 0.34                        | < 0.05                     | - | 2.18      |
|                                                     | ×                |                                                 |                               | < 0.001                     |                            | - | < 0.01    |
| Thallium Total, ICAP                                | mg/L             | < 0.001 ND                                      | < 0.001 ND                    |                             | < 0.001                    | - |           |

Notes:

NA = Not Available / Not Analyzed

ND = Non-detect / Not detected above laboratory method reporting limit

<sup>a</sup> Not a true median as there is only one sample, sample value is listed

<sup>b</sup> NPDES Constituents = Constituents originally analyzed under the Las Vegas Valley MS4 Wet Weather Sampling Program (Starting in 1991) <sup>c</sup> Refer to Table 7-8 for The Club at Sunrise Wet Weather Monitoring Detected Organics Data for the Current MS4 Permit Year (2023-2024) and Prior Three Permit Years





#### Table 7-4: Rainbow Gardens Wet Weather Monitoring Constituent Data for the Current MS4 Permit Year (2023-2024)

| Parameter                                   | Units                         | 01-September-2023 | Median 2023-2024 <sup>a</sup> | Historical Median 1997-2024 | Historic | al Range 199 | 7-2024    |
|---------------------------------------------|-------------------------------|-------------------|-------------------------------|-----------------------------|----------|--------------|-----------|
|                                             |                               | NPD               | ES Constituents <sup>b</sup>  |                             |          |              |           |
| Oil and Grease-Gravimetric                  | mg/L                          | 7.6               | 7.6                           | < 5.0                       | 1.4      | -            | 10        |
| Total Dissolved Solids (TDS)                | mg/L                          | 335               | 335                           | 1,123                       | 270      | -            | 2,560     |
| Fotal Suspended Solids (TŚS)                | mg/L                          | 680               | 680                           | 420                         | < 5      | -            | 12,000    |
| otal Phosphorus-P                           | mg/L                          | 1.56              | 1.56                          | 0.58                        | 0.074    | -            | 4.3       |
| Drthophosphate-P                            | mg/L                          | 1.23              | 1.23                          | 0.13                        | < 0.01   | -            | 3.0       |
| Nitrite, Nitrogen by IC                     | mg/L                          | 0.24              | 0.24                          | < 0.10                      | < 0.001  | _            | 1.9       |
| Nitrate-N by IC                             | mg/L                          | 2.89              | 2.89                          | 7.39                        | < 0.1    | -            | 45        |
| Total Kjeldahl Nitrogen (TKN)               | mg/L                          | 3.66              | 3.66                          | 2.00                        | < 0.2    | -            | 24.5      |
| Copper, Total, ICAP                         | mg/L                          | 0.027             | 0.027                         | 0.0260                      | 0.0013   | -            | 0.218     |
| Lead, Total, ICAP                           | mg/L                          | 0.0163            | 0.0163                        | 0.0081                      | < 0.0005 | -            | 0.151     |
| Zinc, Total, ICAP                           | mg/L                          | 0.17              | 0.17                          | 0.08                        | 0.029    | -            | 0.62      |
| Copper, ICAP, Dissolved                     | mg/L                          | 0.0046            | 0.0046                        | 0.010                       | < 0.001  | -            | 0.0329    |
| Lead, ICAP, Dissolved                       | mg/L                          | < 0.001 ND        | < 0.001 ND                    | < 0.0005                    | < 0.0005 | -            | 0.109     |
| Zinc, ICAP, Dissolved                       | mg/L                          | 0.0283            | 0.0283                        | 0.0239                      | < 0.005  | -            | 0.109     |
| Boron, Total, ICAP                          | mg/L                          | 0.21              | 0.203                         | 0.41                        | 0.05     | -            | 0.75      |
| Turbidity                                   | NTU                           | 581               | 581                           | 200                         | 3        | -            | 3,700     |
|                                             |                               | 27.1              | 27.1                          | 200                         | 25.3     | -            | 27.1      |
| Temperature                                 | Thermal Analysis<br>MPN/100mL | 198,630           |                               | 81,640                      |          |              |           |
| Fecal Coliform Bacteria                     |                               |                   | 198,630                       |                             | 23       | -            | 5,000,000 |
| Fecal Streptococci                          | MPN/100mL                     | 13,330            | 13,330                        | 12,390                      | < 1      | -            | 500,000   |
| E. Coli                                     | MPN/100mL                     | 130,000           | 130,000                       | 770,000                     | 130,000  | -            | 1,410,000 |
| Semivolatile Organic Compounds (SVOCs) °    | No. of Detects                | 0                 | 0                             | 1                           | 0        | -            | 5         |
| Volatile Organic Compounds (VOCs)           | No. of Detects                | 1                 | 1                             | 4                           | 0        | -            | 12        |
| Pesticides <sup>c</sup>                     | No. of Detects                | 0                 | 0                             | 0                           | 0        | -            | 3         |
| lerbicides <sup>°</sup>                     | No. of Detects                | 0                 | 0                             | 0                           | 0        | -            | 4         |
|                                             |                               | Expai             | nsion Constituents            |                             |          |              |           |
| Alkalinity as CaCO₃                         | mg/L                          | 256               | 256                           | 120                         | 65       | -            | 420       |
| Aluminum, Total, ICAP                       | mg/L                          | 9.86              | 9.86                          | 3.50                        | 0.0096   | -            | 69        |
| Antimony, Total, ICAP                       | mg/L                          | 0.003             | 0.003                         | < 0.002                     | < 0.001  | -            | 0.02      |
| Arsenic, Total, ICAP                        | mg/L                          | 0.009             | 0.009                         | 0.011                       | 0.0048   | -            | 0.099     |
| Barium, Total, ICAP                         | mg/L                          | 0.187             | 0.187                         | 0.169                       | 0.044    | _            | 1.6       |
| Beryllium, Total, ICAP                      | mg/L                          | < 0.001 ND        | < 0.001 ND                    | < 0.001                     | < 0.0002 | _            | < 0.005   |
| Bicarbonate Alkalinity as HCO <sub>3</sub>  | mg/L                          | 256               | 256                           | 140                         | 79       | _            | 420       |
| BOD                                         | mg/L                          | < 20 ND           | < 20 ND                       | 13.0                        | < 2      | -            | 79.5      |
| Bromide                                     | mg/L                          | 0.05              | 0.05                          | 0.130                       | < 0.001  | -            | 4.07      |
| Carbonate, Calculated                       | mg/L                          | < 5.00 ND         | < 5.00 ND                     | < 2.0                       | 0.27     | _            | < 10      |
| Cadmium, Total, ICAP                        | µg/L                          | < 1.0 ND          | < 1.0 ND                      | < 1.0                       | < 0.1    | -            | 610       |
| Chloride                                    | mg/L                          | 55.7              | 55.7                          | 186                         | 56       | -            | 369       |
| Chromium, Total, ICAP                       | mg/L                          | 0.0161            | 0.0161                        | 0.0085                      | 0.001    | -            | 2.5       |
| COD                                         | mg/L                          | 174               | 174                           | 76                          | 19.3     | -            | 909       |
| Fluoride                                    |                               | 0.44              | 0.44                          | 0.55                        | < 0.1    |              | 1.0       |
|                                             | mg/L                          | 570               | 570                           | 663                         |          | -            |           |
| Hardness as CaCO₃<br>Hydroxide as OH', Calc | mg/L                          |                   |                               |                             | 323      | -            | 3,000     |
|                                             | mg/L                          | < 5.00 ND         | < 5.00 ND                     | < 2.00                      | 0.005    | -            | < 5.0     |
| ron, Total, ICAP                            | mg/L                          | 8.67              | 8.67                          | 4.15                        | 0.09     | -            | 71        |
| Magnesium, Total, ICAP                      | mg/L                          | 38.4              | 38.4                          | 63                          | 29       | -            | 200       |
| Manganese, Total, ICAP                      | mg/L                          | 0.29              | 0.29                          | 0.32                        | 0.012    | -            | 3.6       |
| Mercury                                     | mg/L                          | < 0.00032 ND      | < 0.00032 ND                  | < 0.0002                    | < 0.0001 | -            | 0.0019    |
| Nickel, Total, ICAP                         | mg/L                          | 0.0128            | 0.0128                        | 0.0129                      | 0.0014   | -            | 0.14      |
| H, Lab                                      | Standard Units                | 8.03              | 8.03                          | 7.57                        | 6.9      | -            | 8.48      |
| Selenium, Total                             | mg/L                          | 0.0019            | 0.0019                        | < 0.005                     | < 0.001  | -            | < 0.15    |
| Selenium, Dissolved                         | mg/L                          | 0.0016            | 0.0016                        | 0.0019                      | 0.0016   |              | 0.0027    |
| Silver, Total, ICAP                         | mg/L                          | < 0.001 ND        | < 0.001 ND                    | < 0.0005                    | < 0.0005 | -            | 1.0       |
| Sodium, Total, ICAP                         | mg/L                          | 53.3              | 53.3                          | 142                         | 53.3     | -            | 303       |
| Sulfate                                     | mg/L                          | 156               | 156                           | 419                         | 156      | -            | 1,100     |
| Surfactants                                 | mg/L                          | 0.28              | 0.28                          | 0.12                        | < 0.035  | -            | 0.88      |
| Thallium Total, ICAP                        | mg/L                          | < 0.0012 ND       | < 0.0012 ND                   | < 0.001                     | < 0.001  | -            | < 0.005   |
| Total Organic Carbon                        | mg/L                          | 15.7              | 15.7                          | 14.7                        | 5.6      |              | 82.7      |

Notes:

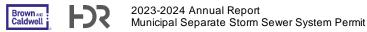
NA = Not Available / Not Analyzed ND = Non-detect / Not detected above laboratory method reporting limit

<sup>a</sup> Not a true median as there is only one sample, sample value is listed <sup>b</sup> NPDES Constituents = Constituents originally analyzed under the Las Vegas Valley MS4 Wet Weather Sampling Program (Starting in 1991) <sup>c</sup> Refer to Table 7-9 for Rainbow Gardens Wet Weather Monitoring Detected Organics Data for the Current MS4 Permit Year (2023-2024) and Prior Three Permit Years








## Table 7-5: The Club at Sunrise Wet Weather Monitoring Detected Organics Data for the Current MS4 Permit Year (2023-2024) and the Prior Three MS4 Permit Years

| Parameter               |                              | Detections 2023-2024 | Detections 2022-2023 | Detections 2021-2022 | Detections 2020-2021 <sup>a</sup> | Historical Range of<br>Detections 1997-2024 |
|-------------------------|------------------------------|----------------------|----------------------|----------------------|-----------------------------------|---------------------------------------------|
|                         | 2,4-D                        |                      | Х                    | Х                    |                                   |                                             |
|                         | Bentazon                     |                      |                      |                      |                                   |                                             |
| l la via ini al a       | Benzoic Acid                 |                      |                      |                      |                                   |                                             |
| Herbicide<br>Detections | Dalapon                      |                      |                      |                      |                                   | 0 - 4                                       |
| Deteotione              | Dicamba                      |                      |                      | Х                    |                                   |                                             |
|                         | Picloram                     |                      |                      |                      |                                   |                                             |
|                         | Total No. of Detects:        | 0                    | 1                    | 2                    | -                                 |                                             |
|                         | Aldicarb Sulfone             |                      |                      |                      |                                   |                                             |
| Destiside               | Alpha-BHC                    |                      |                      |                      |                                   |                                             |
| Pesticide<br>Detections | Beta-BHC                     |                      |                      |                      |                                   | 0 - 5                                       |
| Deteotions              | Carbaryl                     |                      |                      |                      |                                   |                                             |
|                         | Total No. of Detects:        | 0                    | 0                    | 0                    | -                                 |                                             |
|                         | 4-Nitrophenol                |                      |                      |                      |                                   |                                             |
|                         | 4-Methylphenol               |                      |                      |                      |                                   |                                             |
|                         | Benzyl Alcohol               |                      | Х                    | Х                    |                                   |                                             |
|                         | Bis(2-ethylhexyl)adipate     |                      |                      |                      |                                   |                                             |
| 0.400                   | Bis(2-ethylhexyl)phthalate   |                      |                      |                      |                                   |                                             |
| SVOC<br>Detections      | Diethylphthalate             |                      | Х                    |                      |                                   | 0 - 7                                       |
| Detections              | Dimethylphthalate            |                      |                      |                      |                                   |                                             |
|                         | Di-n-Butylphthalate          |                      |                      |                      |                                   |                                             |
|                         | Di-n-Octylphthalate          |                      |                      |                      |                                   |                                             |
|                         | Phenol                       |                      | Х                    | Х                    |                                   |                                             |
|                         | Total No. of Detects:        | 0                    | 3                    | 2                    | -                                 |                                             |
|                         | 2-Butanone                   |                      |                      |                      |                                   |                                             |
|                         | Acetone                      | Х                    | Х                    | Х                    |                                   |                                             |
|                         | Acrylonitrile                |                      |                      |                      |                                   |                                             |
|                         | Benzene                      |                      |                      |                      |                                   |                                             |
|                         | Bromodichloromethane         |                      |                      |                      |                                   |                                             |
| VOC                     | Chloroform                   |                      |                      |                      |                                   |                                             |
| Detections              | Chloromethane                |                      |                      |                      |                                   | 0 - 14                                      |
|                         | Dibromomethane               |                      |                      |                      |                                   |                                             |
|                         | Methyl ethyl ketone<br>(MEK) |                      | Х                    | Х                    |                                   |                                             |
|                         | Tetrachloroethene            |                      |                      |                      |                                   |                                             |
|                         | Toluene                      |                      |                      |                      |                                   |                                             |
|                         | Total No. of Detects:        | 1                    | 2                    | 2                    | -                                 |                                             |

Notes:

Cells marked with an "X" indicate that the constituent was detected in the sample

<sup>a</sup> During the 2020-2021 MS4 permit year no significant storm events occurred that generated sufficient runoff for sampling



## Table 7-6: Rainbow Gardens Wet Weather Monitoring Detected Organics Data for the Current MS4 Permit Year (2023-2024) and the Prior Three MS4 Permit Years

| Parameter               |                           | Detections 2023-2024 | Detections 2022-2023 | Detections 2021-2022 | Detections 2020-2021 <sup>a</sup> | Historical Range of<br>Detections 2003-2024 |
|-------------------------|---------------------------|----------------------|----------------------|----------------------|-----------------------------------|---------------------------------------------|
|                         | 2,4-D                     |                      | Х                    |                      |                                   |                                             |
|                         | Bentazon                  |                      |                      |                      |                                   |                                             |
| Herbicide<br>Detections | Benzoic Acid              |                      |                      |                      |                                   | 0                                           |
|                         | Dalapon                   |                      |                      |                      |                                   | 0 - 4                                       |
|                         | Picloram                  |                      |                      |                      |                                   |                                             |
|                         | Total No. of Detects:     | 0                    | 1                    | 0                    | -                                 |                                             |
|                         | Aldicarb Sulfone          |                      |                      |                      |                                   |                                             |
|                         | Alpha-BHC                 |                      |                      |                      |                                   |                                             |
| Pesticide               | Beta- BHC                 |                      |                      |                      |                                   | â â                                         |
| Detections              | Carbaryl                  |                      |                      |                      |                                   | 0 - 3                                       |
|                         | Carbofuran                |                      |                      |                      |                                   |                                             |
|                         | Total No. of Detects:     | 0                    | 0                    | 0                    | -                                 |                                             |
|                         | 4-Nitrophenol             |                      |                      |                      |                                   |                                             |
|                         | 4-Methylphenol            |                      |                      |                      |                                   |                                             |
|                         | Benzyl alcohol            |                      | Х                    | Х                    |                                   |                                             |
| 01/00                   | Di(2-ethylhexyl)phthalate |                      |                      |                      |                                   |                                             |
| SVOC<br>Detections      | Di-n-Butylphthalate       |                      |                      |                      |                                   | 0 - 5                                       |
| Detections              | Di-n-Octylphthalate       |                      |                      |                      |                                   |                                             |
|                         | Diethylphthalate          |                      |                      |                      |                                   |                                             |
|                         | Phenol                    |                      | Х                    |                      |                                   |                                             |
|                         | Total No. of Detects:     | 0                    | 2                    | 1                    | -                                 |                                             |
|                         | 2-Butanone                |                      |                      |                      |                                   |                                             |
|                         | Acetone                   | Х                    | Х                    |                      |                                   |                                             |
|                         | Acrylonitrile             |                      |                      |                      |                                   |                                             |
|                         | Benzene                   |                      |                      |                      |                                   |                                             |
|                         | Bromodichloromethane      |                      |                      |                      |                                   |                                             |
|                         | Caprolactam               |                      |                      | Х                    |                                   |                                             |
| VOC                     | Chloroform                |                      | Х                    |                      |                                   | 0 10                                        |
| Detections              | Chloromethane             |                      |                      |                      |                                   | 0 - 12                                      |
|                         | Dibromomethane            |                      |                      |                      |                                   |                                             |
|                         | Methyl ethyl ketone (MEK) |                      | Х                    |                      |                                   |                                             |
|                         | Naphthalene               |                      |                      |                      |                                   |                                             |
|                         | Tetrachloroethene         |                      |                      |                      |                                   |                                             |
|                         | Toluene                   |                      |                      |                      |                                   |                                             |
|                         | Total No. of Detects:     | 1                    | 3                    | 1                    | -                                 |                                             |

Notes:

Cells marked with an "X" indicate that the constituent was detected in the sample

<sup>a</sup> During the 2020-2021 MS4 permit year no significant storm events occurred that generated sufficient runoff for sampling



### 7.1.4 2024-2025 Stormwater Monitoring Plan

Section B.6.1.1 specifies that "the Permittees shall submit a revised stormwater monitoring plan to the Division for review for this permit within eighteen (18) months of the issuance of this permit." The due date is August 5th, 2025. In the meantime, the previous monitoring plan will continue to be implemented.

The evaluation of characterization data (Section 15) included in this Annual Report showed some outlying data points in correlation of turbidity and TSS. To do more evaluation of the correlation between turbidity and TSS, additional turbidity and TSS samples will be collected. These samples will be analyzed by another laboratory certified by the State of Nevada for both constituents in upcoming sampling events. In-situ turbidity samples will be analyzed to align with sampling duration, which is approximately every 3 minutes during a sampling event for the Club at Sunrise and 5 mins at Rainbow Gardens.

# Section 8

Public Outreach and Education Program



Section B.5.4 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley includes requirements for a Public Outreach and Education Program. The permit requires that the SWMP describe: 1) the public outreach and education program intended to reduce the discharge of pollutants to the maximum extent practicable; 2) the different types of educational materials to be distributed; 3) the specific educational and public activities undertaken; and 4) how the Permittees inform developers, contractors, architects, engineers, local officials, etc. about water quality issues associated with urban runoff, NPDES requirements, and the availability of educational / training workshops pertaining to urban runoff.

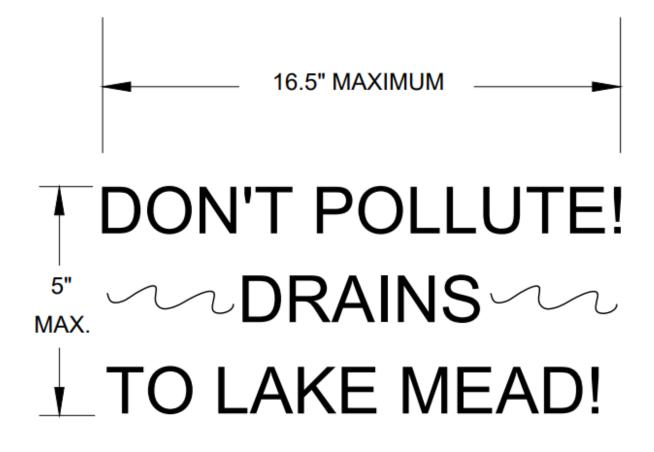
The overall objectives of the Public Outreach and Education Program are to:

- Inform the general public in the Las Vegas Valley about important water quality issues related to stormwater runoff in the Las Vegas Valley.
- Influence behavior of the general public to reduce activities that have a negative impact on stormwater runoff quality and increase activities that have a positive impact on stormwater runoff quality in the Las Vegas Valley.

### 8.1 Overview of Best Management Practices

Table 5-1 in Section 5.0 (Stormwater Management Approach) of this Annual Report identifies the BMPs employed by the Las Vegas Valley in the 2023-2024 MS4 permit year, to meet permit requirements. Specifically, the Public Outreach and Education Program employed the following Source Control (SC) BMPs, discussed in the following subsections:

- SC-11 Storm Drain Marking Program
- SC-17 Pet Waste Management
- SC-30 LVV Stormwater Quality Website
- SC-31 Public Outreach Events
- SC-32 Elementary School Presentations
- SC-33 Public Service Announcements / Flood Channel
- SC-34 Brochures and Printed Material


### 8.2 Description of Individual Best Management Practices

#### 8.2.1 Storm Drain Marking Program (SC-11)

The storm drain marking program consisted of imprinting the curb at storm drain inlets in new developments and areas of significant redevelopment. Figure 8-1 shows the Regional Transportation Commission of Southern Nevada (RTC) standard drawing No. 421 "Storm Water Quality Management Stamp and Sign Detail". The stamps were required for new drain inlets installed in the public right-of-way and were intended to educate the public on the connection between the storm drain system and their drinking water source (Lake Mead), as well as to discourage illegal dumping.



## Figure 8-1: Regional Transportation Commission of Southern Nevada (RTC) Standard Drawing No. 421 "Stormwater Quality Management Stamp and Sign Detail"



During the permit year there were no new or revised standards for storm drain marking. In 2023-2024, stamps were installed at 100% of new developments in the Las Vegas Valley, per the RTC standards. The Permittees continued to educate their inspectors and contractors of this requirement, per the RTC standard and per the SWMP. Inspectors verified that this requirement was met for all new development. During the permit year, City of Henderson installed 636 plaques on curbs that predated Standard Drawing No. 421.

#### 8.2.2 Pet Waste Management (SC-17)

Pet waste management was largely addressed through public outreach events and activities targeted to pet owners. Pet owners were encouraged to clean up waste left by their pets in yards, parks, and open spaces. The Permittees provided educational materials at public outreach events, which are discussed in more detail in a later subsection. Public service campaigns regarding pet waste management are provided at the <u>www.LVstormwater.com</u> website.

In addition to providing educational materials, the Permittees also purchased pet waste disposal bags and dispensers and provided them at parks and open spaces. These measures can substantially reduce the potential for stormwater to pick up pathogens from pet waste in public and private areas. Table 8-1 provides a summary of pet waste disposal bags purchased during the current permit year and prior three permit years.



| Municipal Permittee     | 2023-2024 | 2022-2023               | 2021-2022              | 2020-2021 |
|-------------------------|-----------|-------------------------|------------------------|-----------|
| City of Henderson       | 1,500,000 | 1,500,000               | 1,500,000              | 1,824,000 |
| City of Las Vegas       | 1,760,000 | 1,320,000               | 1,600,000              | 1,620,000 |
| City of North Las Vegas | 120,000   | 120,000                 | 100,000                | 480,000   |
| Clark County            | 1,200,000 | 960,000                 | 2,462,000              | 2,760,000 |
| SWMP Target             | Dir       | ect Public Outreach and | d Education to Pet Own | iers      |

## Table 8-1: Pet Waste Disposal Bags Purchased by Permittees during the Current Permit Year (2023-2024) and the Prior Three Permit Years

### 8.2.3 Las Vegas Valley (LVV) Stormwater Quality Website (SC-30)

The Stormwater Quality Management Committee (SQMC) continued to host the LVV stormwater quality website, <u>www.LVstormwater.com</u>, on behalf of the Permittees. The website provides information about the storm drain system, Las Vegas Valley monitoring programs, the NPDES MS4 Permit Program, federal and state regulations, and more. Several guidance documents are available for the construction industry, homeowners, businesses, and other industry to educate the public and special interest groups about reducing pollutants and improving the quality of stormwater runoff. The <u>LVstormwater.com</u> website was reviewed more than twice in the permit year, as shown in Table 8-2: (1) review of brochures, and (2) full review of accuracy and completeness.

In addition to the SQMC LVV stormwater quality website, the municipal Permittees continued to maintain stormwater information on their respective websites. During the permit year, the Permittees reviewed their respective websites and updated them as needed. The Permittee websites may include stormwater outreach materials, regulations, links for reporting illicit discharges or spills, and links to additional resources, including <u>www.LVstormwater.com</u>.

| Date Reviewed               | Item(s) Reviewed                                 |
|-----------------------------|--------------------------------------------------|
| August 2023 – March 2024    | Brochures                                        |
| November 2023<br>March 2024 | Overall accuracy and completeness                |
| SWMP Target                 | Review lvstormwater.com website every six months |

#### Table 8-2: Stormwater Quality Website Reviews during the Current Permit Year

#### 8.2.4 Public Outreach Events (SC-31)

During the permit year, the Permittees attended environmental fairs and community events to distribute educational materials on stormwater quality and respond to public questions or concerns. Table 8-3 provides an overview of the number of public outreach events that occurred during the current permit year and the prior three permit years.



### Table 8-3: Number of Public Outreach and Education Events Attended by the Permittees for the Current Permit Year (2023-2024) and the Prior Three Permit Years

| Municipal Permittee                             | 2023-2024                                          | 2022-2023      | 2021-2022      | 2020-2021      |
|-------------------------------------------------|----------------------------------------------------|----------------|----------------|----------------|
| City of Henderson                               | 10                                                 | 6              | 3              | 1              |
| City of Las Vegas                               | 5                                                  | 8              | 6              | 2              |
| City of North Las Vegas                         | 0                                                  | 0              | 0              | 0              |
| Clark County                                    | 0 <sup>b</sup>                                     | 0 <sup>b</sup> | 0 <sup>b</sup> | 0 <sup>b</sup> |
| Clark County Regional<br>Flood Control District | 50                                                 | 30             | 61             | 0              |
| TOTAL Number of<br>Events Attended <sup>a</sup> | 68                                                 | 47             | 80             | 7              |
| SWMP Target                                     | Attend three total public outreach events annually |                |                |                |

Note:

<sup>a</sup> Total does not always equal the sum of individual Permittee attendance, as some events were attended by multiple Permittees <sup>b</sup> See Section 8.2.5.1. Clark County Public Outreach is Grand Funded, so it is not counted towards MS4 Permit Compliance

Some examples of the public outreach and education events attended by Permittees during the current permit year included:

- City of Henderson Employee Stormwater Awareness
- City of Las Vegas Code Enforcement Professional Development Training
- City of Las Vegas Small Business & Food Truck Safety Expo
- City of Las Vegas YDSI Professional Development Training
- Clark County Employee Presentations for New Employees
- Clark County Wellness & Health Fair
- Discovery Children's Museum Flood Awareness Day/Stormwater
- Discovery Day Wetlands Park
- Fire Station 83, 85, 87, 91, 97 and 98 Open Houses
- National Night Out
- Nevada Contractors Construction Career Day
- Nevada State Science Teacher Conference
- Paws in the Park event, Desert Breeze Park
- Supplier Opportunity Fair

#### 8.2.5 Elementary School Presentations (SC-32)

In an effort to introduce the importance of stormwater quality management at an early age, the CCRFCD also provided presentations to elementary school students on important stormwater concepts. The presentations were provided during normal school sessions and day camps for students. The presentations focused on stormwater quality and flood safety concerns. Table 8-4 provides a summary of the elementary school presentation effort during the current permit year and the prior three permit years.



# Table 8-4: Summary of Elementary School Presentations for the Current Permit Year(2023-2024) and the Prior Three Permit Years

| Number of Contacts | 2023-2024                                             | 2022-2023 | 2021-2022 | 2020-2021 |  |
|--------------------|-------------------------------------------------------|-----------|-----------|-----------|--|
| Students           | 3,280                                                 | 1,963     | 630       | 405       |  |
| Elementary Schools | 38                                                    | 14        | 1         | 13        |  |
| SWMP Target        | Conduct five elementary school presentations annually |           |           |           |  |

#### 8.2.5.1 FY2024 Clark County Water Quality Grant Funded Public Outreach

MS4 Permit requirements for public outreach and education are fulfilled by the CCRFCD. Grant funded public outreach and education provided by Clark County Water Quality are above and beyond that which is necessary to comply with the MS4 Permit. Items of note included:

- Clark County's educational stormwater website (StormwaterVegas.com) is accessible to the general public to provide insight into the program.
- Water Quality participated in the Earth Day event at the Springs Preserve, the BioBlast at the Clark County Wetlands Park, and the Las Vegas Science and Technology Festival.
- Water Quality organized the second annual Stormwater Pollution Awareness Month. The event was hosted in collaboration with nine project partners, including the Clark County (CC) Water Reclamation District (WRD), CC Wetlands Park, CC Department of Aviation, CCRFCD, Las Vegas Wash Coordination Committee (LVWCC), Southern Nevada Water Authority, City of Henderson, and the City of Las Vegas. The environmental outreach month included proclamations by the Clark County Commissioners and the CCRFCD and outreach including billboards and weekly social media posts.
- Water Quality participated in a Career Day event at Vassiliadis Elementary School.

#### 8.2.6 Public Service Announcements / Flood Channel (SC-33)

In the Las Vegas Valley, there were additional methods utilized to provide stormwater-related information to the general public, particularly the use of public service announcements (PSAs) and segments presented on the CCRFCD-sponsored Flood Channel. The Permittees produced several PSAs that were broadcast during the current permit year and produced new Flood Channel segments. Topics included: proper disposal of pet waste and household chemicals, the importance of commercial car washes, and avoiding or reporting clogged storm drains. Details regarding the dissemination of PSAs is provided in Table 8-5.

| Public Service Distribution Source                          |                                                                                                                                            | Duration                                                                                     |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Half-hour Flood Channel<br>Segments and paid radio<br>spots | Local cable Channels 2 and 4 plus Anthem<br>HOA TV - The Flood Channel. Local<br>Channels 3, 5, 8, 13, and Telemundo<br>Stormwater Quality | January-June 2024<br>Airs six to seven times a week. Airs<br>approximately 28 times a month. |  |
| Social Media PSAs                                           | Facebook, Instagram, TikTok, and X (formerly<br>Twitter)                                                                                   | Continuously                                                                                 |  |
| Be Lake Friendly PSA                                        | North Las Vegas City Hall Lobby                                                                                                            | Continuously on community<br>information video loop                                          |  |
| Produce or update one PSA every 2 years                     |                                                                                                                                            |                                                                                              |  |
| SWMP Target                                                 | Broadcast one PSA annually, for at I                                                                                                       | east a two month duration                                                                    |  |

# Table 8-5: Summary of Public Service Announcements for the Current Permit Year (2023-2024)



#### 8.2.7 Brochures and Printed Material (SC-34)

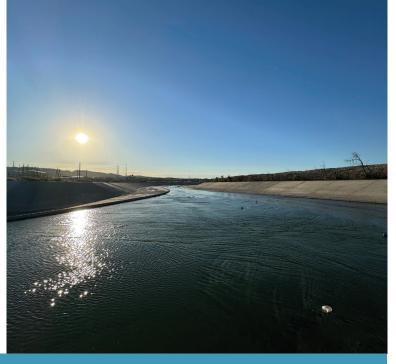
The Permittees have a variety of brochures and printed material available to educate the public, many of which are created by the SQMC. Currently brochures are available for construction site BMPs, information for residents, guidelines for businesses and homeowners, construction site supervision, industrial stormwater permits, industrial and commercial BMPs, and stormwater pollution prevention information for businesses and homeowners.

Clark County has also created over 30 different stormwater pollution prevention flyers and brochures, developed in both English and Spanish through Non-Point Source (NPS) grants. These include commercial/industrial, construction, and resident's flyers. Most of the brochures and flyers are available on their website

(https://www.clarkcountynv.gov/government/departments/water quality/index.php).

CCRFCD created and distributed Drainger Danger Activity books and Dog Poop flyers. City of Las Vegas has a water quality educational kiosk structure installed at the Harris-Marion Park facility, next to the Las Vegas Wash. City of North Las Vegas created and distributed a flash flood & flood safety information.

During the permit year, COH had 10 stormwater brochures that inspectors or enforcement staff distributed as applicable during the permit year. In addition, stormwater 101 posters were put up at libraries, and pickup dog waste coloring sheets and general stormwater brochures were provided at public outreach events. Public outreach events may include one of three Putt Putt greens to educate the public on stormwater pollutants (Putt Putt Themes: car wash, household pollutants and pet waste). In October 2023, COH proclaimed it was stormwater pollution awareness month. Internally COH sent out information on stormwater pollution awareness month via the City's newsletter "Spotlight", in the City Manager's video, and highlighted on it on CityNet, COH's internal website.


Throughout the permit year, the Permittees routinely distributed information on stormwater quality and how it can be influenced by common behaviors, including the importance of proper pet waste disposal. In addition, the Permittees distributed materials in-person at environmental, community events, during construction inspections, industrial inspection and when responding to customer complaints. Table 8-6 identifies the materials printed by the municipal Permittees to supplement CCRFCD materials for the permit year.

| Permittee               | Number of Educational Brochures Printed      |  |  |  |
|-------------------------|----------------------------------------------|--|--|--|
| City of Henderson       | 1,670                                        |  |  |  |
| City of Las Vegas       | 600                                          |  |  |  |
| City of North Las Vegas | 50                                           |  |  |  |
| Clark County            | 0 <sup>a</sup>                               |  |  |  |
| SWMP Target             | Produce printed material annually, as needed |  |  |  |

Table 8-6: Educational Brochures Printed for the Current Permit Year (2023-2024)

Note:

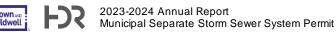
<sup>a</sup> Previously created materials were distributed, and electronic versions are available on Clark County's website



# Section 9

Source Control and MS4 Maintenance Program




### 9 Source Control and MS4 Maintenance Program

Section B.5.5 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley includes requirements for a Source Control and MS4 Maintenance Program to reduce pollutants in stormwater runoff from commercial and residential areas. The permit requires that the SWMP describe: 1) the maintenance activities and schedule to reduce pollutant discharges from the MS4; 2) the practices for operating and maintaining public roadways and procedures for reducing the impact on receiving waters; 3) the evaluation, monitoring, and reduction in pollution runoff from municipal facilities; and 4) the evaluation and reduction in pollution from the MS4 associated with the application of pesticides, herbicides, and fertilizer. The focus of the Source Control portion of the program is pollution minimization, while the focus of the MS4 maintenance portion of the program is removing sediment and other pollutants from public streets and drainage systems.

#### 9.1 Overview of Best Management Practices

Table 5-1 in Section 5 (Stormwater Management Approach) of this Annual Report identifies the BMPs employed by the Permittees and other stakeholders in the 2023-2024 MS4 permit year, to meet permit requirements. Specifically, the Source Control and MS4 Maintenance Program employed the following Maintenance Measure (MM) and Source Control (SC) BMPs, discussed in the following subsections:

- MM-1 Street Sweeping
- MM-2 Local Storm Drain Maintenance
- MM-3 Regional Detention Basin Maintenance
- MM-4 Maintenance of Public Facilities
- SC-1 Water Conservation Ordinances
- SC-2 Turf Conversion Program
- SC-3 Public Employee Supervisor Fertilizer / Pesticide Training
- SC-4 Use of Alternate Products and Application Procedures
- SC-5 Household Hazardous Waste Collection
- SC-7 Ordinances Prohibiting Non-Stormwater Discharges and Littering
- SC-8 Desert Dumping Controls
- SC-10 Dust Control Measures
- SC-14 Trash Receptacle Enclosures



#### 9.2 Description of Individual Best Management Practices

#### 9.2.1 Street Sweeping (MM-1)

The Las Vegas Valley street sweeping program applies to public streets under the jurisdiction of the municipal Permittees and is expanded as new areas are developed. In contrast, state highway and freeway maintenance are the responsibility of the Nevada Department of Transportation (NDOT), while maintenance of private streets and parking lots is the responsibility of the private owner. Public street maintenance includes street sweeping of paved streets with curb and gutter. Curbed-and-paved public streets are swept on a regular basis to remove accumulated sediment, debris, trash, hydrocarbons, and other chemicals.

The number of miles of public streets maintained by each Permittee include:

- City of Henderson
   959 centerline miles
- City of Las Vegas 2,683 curb miles
- City of North Las Vegas 692 centerline miles
- Clark County 4,780 centerline miles

Table 9-1 provides a summary of the miles of street swept and the amount of material removed for each Permittee during the current permit year and the prior three permit years.

### Table 9-1: Summary of Street Sweeping Activity for the Current Permit Year (2023-2024) and the Prior Three Permit Years

| Municipal Permittee |                                      | 2023-2024                                                     | 2022-2023           | 2021-2022           | 2020-2021           |  |
|---------------------|--------------------------------------|---------------------------------------------------------------|---------------------|---------------------|---------------------|--|
| City of Henderson   | Street Swept<br>[miles]              | 71,310 <sup>a</sup>                                           | 74,692 <sup>a</sup> | 64,507 <sup>a</sup> | 66,936 <sup>a</sup> |  |
|                     | Material<br>Removed<br>[cubic yards] | 4,907 <sup>b</sup>                                            | 4,882 <sup>b</sup>  | 3,928 <sup>b</sup>  | 4,145 <sup>b</sup>  |  |
|                     | Street Swept<br>[curbed miles]       | 182,773                                                       | 116,156             | 174,246             | 168,156             |  |
| City of Las Vegas   | Material<br>Removed<br>[cubic yards] | 18,062                                                        | 9,810               | 14,740              | 15,718              |  |
| City of North Las   | Street Swept<br>[miles]              | 15,561                                                        | 14,138              | 20,152              | 20,547              |  |
| Vegas               | Material<br>Removed<br>[cubic yards] | 3,982                                                         | 3,634               | 5,974               | 6,230               |  |
| Clark County        | Street Swept<br>[miles]              | 69,750                                                        | 73,400              | 67,650              | 64,800              |  |
|                     | Material<br>Removed<br>[cubic yards] | 5,364                                                         | 6,927               | 25,500              | 27,588              |  |
| SWMP Target         | Sv                                   | Sweep curbed-and-paved public city streets once every 30 days |                     |                     |                     |  |

wine rarget Sweep curbed-a

Notes:

<sup>a</sup>Odometer miles

<sup>b</sup>Material removed is a total of street sweeping and drain inlet material removed



#### 9.2.2 Local Storm Drain System Maintenance (MM-2)

The Permittees inspect and, as needed, clean (i.e., remove sediment, debris, and trash) storm drain inlets and catch basins in the Las Vegas Valley MS4 system. Routine maintenance is performed to assure proper hydraulic performance, prevent clogging, and to remove potential sources of pollution. After large storms, additional inspections of facilities that historically have problems with debris accumulation and clogging are performed and the facilities are cleaned, if necessary, in preparation for the next storm event.

The number of storm drain drop inlets in the public right-of-way maintained by each Permittee include:

- City of Henderson 5,307 storm drain inlets
- City of Las Vegas
   9,067 storm drain inlets
- City of North Las Vegas 3,450 storm drain inlets
- Clark County 13,829 storm drain inlets

Table 9-2 provides a summary of the number of storm drain inlets cleaned / maintained and the amount of material removed for each Permittee during the current permit year and the prior three permit years.



## Table 9-2: Summary of Storm Drain Maintenance Activity for the Current Permit Year(2023-2024) and the Prior Three Permit Years

| Metric 2023-2024           |                                                 | 2023-2024           | 2022-2023          | 2021-2022          | 2020-2021          |  |  |
|----------------------------|-------------------------------------------------|---------------------|--------------------|--------------------|--------------------|--|--|
|                            | Number of Inlets<br>Inspected/Cleaned           | 1,126               | 996                | 1,049              | 1,910              |  |  |
| City of<br>Henderson       | Percentage of Total<br>Drop Inlets<br>Inspected | 21%                 | 20%                | 21%                | 39%                |  |  |
|                            | Material Removed<br>[cubic yards]               | 4,907 <sup>a</sup>  | 4,882 <sup>a</sup> | 3,928 <sup>a</sup> | 4,145 <sup>a</sup> |  |  |
|                            | Number of Inlets<br>Inspected/Cleaned           | 21,654              | 16,125             | 15,192             | 13,860             |  |  |
| City of Las<br>Vegas       | Percentage of Total<br>Drop Inlets<br>Inspected | 239% <sup>b</sup>   | 188% <sup>b</sup>  | 192% <sup>b</sup>  | 175% <sup>b</sup>  |  |  |
|                            | Material Removed<br>[cubic yards]               | 797                 | 568                | 460                | 446                |  |  |
|                            | Number of Inlets<br>Inspected/Cleaned           | 675                 | 607                | 759                | 569                |  |  |
| City of North<br>Las Vegas | Percentage of Total<br>Drop Inlets<br>Inspected | 20%                 | 20%                | 25%                | 20%                |  |  |
|                            | Material Removed<br>[cubic yards]               | 4,622               | 3,183              | 2,351              | 66                 |  |  |
|                            | Number of Inlets<br>Inspected/Cleaned           | 6,767               | 5,629              | 14,198             | 16,059             |  |  |
| Clark County               | Percentage of Total<br>Drop Inlets<br>Inspected | 49%                 | 41%                | 103% <sup>b</sup>  | 116% <sup>b</sup>  |  |  |
|                            | Material Removed<br>[cubic yards]               | 1,009               | 1,517              | 2,882              | 476                |  |  |
| SWMP Target                | Inspect 20%                                     | of drop inlets a mi |                    |                    |                    |  |  |

Notes:

<sup>a</sup>Material removed is a total of street sweeping and drain inlet material removed

<sup>b</sup>Percentage exceeds 100%, as the same drain inlet may be inspected several times during the permit year

#### 9.2.3 Regional Detention Basin Maintenance (MM-3)

Based on criteria developed by the CCRFCD and adopted by all Permittees, regional detention basins are designed to control the 100-year flood to discharges that can be safely conveyed in downstream facilities. The purpose of the detention basin maintenance program is to remove sediment, debris, and other pollutants from detention basins, so they are not transported downstream through the MS4. The Permittees inspect and, as needed, clean (i.e., remove sediment, debris, and trash) detention basins within their jurisdiction. Maintenance activities, including rehabilitation, are also performed to preserve flood storage capacity, assure proper hydraulic performance, and remove potential sources of pollution.

The number of detention basins within the permit area include:

- City of Henderson
   14 detention basins
- City of Las Vegas 22 detention basins
- City of North Las Vegas 10 detention basins



#### Clark County 33 detention basins

Table 9-3 provides a summary of the number of detention basin inlets cleaned / maintained, and the amount of material removed for each Permittee during the current permit year and the prior three permit years.

| Table 9-3: Summary of Detention Basin Maintenance Activity for the Current Permit |
|-----------------------------------------------------------------------------------|
| Year (2023-2024) and the Prior Three Permit Years                                 |

| Municipal Permittee        |                                                                     | 2023-2024           | 2022-2023           | 2021-2022        | 2020-2021        |
|----------------------------|---------------------------------------------------------------------|---------------------|---------------------|------------------|------------------|
| City of<br>Henderson       | Number of Detention<br>Basins<br>Inspected/Cleaned                  | 33 <sup>a</sup>     | 33 <sup>a</sup>     | 39 <sup>a</sup>  | 26 <sup>a</sup>  |
|                            | Material Removed<br>[cubic yards]                                   | 17,325 <sup>b</sup> | 12,106 <sup>b</sup> | 2,739            | 4,366            |
| City of Las<br>Vegas       | Number of Detention<br>Basins<br>Inspected/Cleaned                  | 70 <sup>a</sup>     | 105 <sup>a</sup>    | 69 <sup>a</sup>  | 40 <sup>a</sup>  |
|                            | Material Removed<br>[cubic yards]                                   | 82,867              | 9,691               | 11,470           | 21,253           |
| City of North<br>Las Vegas | Number of Detention<br>Basins<br>Inspected/Cleaned                  | 19 <sup>a</sup>     | 23 <sup>a</sup>     | 41 <sup>a</sup>  | 53 <sup>a</sup>  |
|                            | Material Removed<br>[cubic yards]                                   | 3,920               | 530                 | 2,566            | 5,254            |
| Clark County               | Number of Detention<br>Basins<br>Inspected/Cleaned                  | 132 <sup>a</sup>    | 128 <sup>a</sup>    | 120 <sup>a</sup> | 116 <sup>a</sup> |
|                            | Material Removed<br>[cubic yards]                                   | 2,135               | 1,660               | 4,324            | 2,085            |
| SWMP Target                | Inspect twice annually and after major storms; clean as appropriate |                     |                     |                  |                  |

Notes:

<sup>a</sup> Number is total number of detention basins inspected/cleaned during the permit year (may include multiple cleans/ inspections at individual detention basins).

<sup>b</sup>Number includes material removed from storm channel maintenance.

#### 9.2.4 Maintenance of Public Facilities (MM-4)

This measure is aimed at Permittee-owned sites with urban land uses such as parks, golf courses, parking lots, garages, vehicle wash areas, as well as vehicle storage and maintenance areas. This measure is similar to MM-1 and MM-2 and involves street sweeping, drain inlet cleaning, and vehicle maintenance on publicly owned parcels.

BMP MM-4's target goal is that public facility maintenance plans should be reviewed every other year, during odd permit years. The Permittees reviewed and modified public facility maintenance plans during the 2023-2024 MS4 permit year as follows:

- City of Henderson Reviewed and updated the contact information for Van Wagenen, Vactor Dump, Fleet Maintenance, and Park plans.
- City of Las Vegas Reviewed and updated their contact information and staffing on the Fleet Facilities and Parks Maintenance.
- Clark County Reviewed and updated contact information and maps for the Public Facility Maintenance Plan.



• City of North Las Vegas - Reviewed and updated contact information for the Public Facility Plan.

#### 9.2.5 Water Conservation (Drought) Ordinances (SC-1)

Each Permittee has a water conservation ordinance designed to reduce use of water outdoors. The water conservation ordinances adopted by the Permittees include restrictions on new turf areas, particularly in front yards, and requires the use of xeriscaping in new development. The local water conservation ordinances are the City of Henderson Municipal Code, Chapter 14.14, Conservation; the City of Las Vegas Municipal Code, Chapter 14.11, Drought Plan; the City of North Las Vegas, Chapter 13.08, Water Conservation; and the Clark County Code, Chapter 24.34, Water Use Restrictions. Minimizing outdoor water use reduces water waste and limits the amount of pollutants transported to the MS4 via overwatering.

In addition, the SNWA (2024 Water Resource Plan) has a regional water use goal of 86 total system gallons per capita per day (GPCD) by 2035. This goal addresses changing conditions and identifies that additional progress is needed to maximize available supplies. The total system GPCD is calculated by dividing all SNWA water sources diverted (excluding off-stream storage) less corresponding Colorado River return-flow credits by total SNWA resident population served per day.

The 2024 Water Resource Plan states that warmer and drier conditions will possibly increase local water demands. System age and climate change could increase this demand by 10 GPCD or more by 2035. Improving the efficiency of turf irrigation and cooling uses are some actions that can help to keep local supply in balance.

SNWA GPCD recognizes that not all water delivered by SNWA is consumed, as SNWA recycles nearly all indoor water use, either through return-flow credits or direct reuse, and also allows reporting to reflect actual weather conditions. Table 9-4 shows Consumptive Use GPCD over the past several years.

| Metric                            | 2023 | 2022                                      | 2021 | 2020 |  |  |
|-----------------------------------|------|-------------------------------------------|------|------|--|--|
| Gallons per Capita per Day (GPCD) | 89   | 104                                       | 110  | 112  |  |  |
|                                   | 100% | 100% compliance with drought ordinances   |      |      |  |  |
| SWMP Target                       | No i | No increase in per capita water use rates |      |      |  |  |

Table 9-4: SNWA Reported Per Capita Water Use Rate (GPCD) for the Current Permit Year (2023-2024) and the Prior Three Permit Years

#### 9.2.6 Turf Conversion Program (SC-2)

One goal of the Source Control and MS4 Maintenance Program is to reduce runoff from irrigated urban areas. In combination with drought ordinances, turf removal can assist with this effort. The SNWA has a Water Smart Landscapes program (https://www.snwa.com/rebates/wsl/index.html) that offers a rebate to consumers for removal of existing turf. This program helps Southern Nevada conserve water and eliminates the need to apply fertilizers and herbicides to the converted areas. The SNWA currently offers a Water Smart Landscapes rebate to customers (business, homeowners associations, and multifamily properties) of \$3.00 per square foot of grass that is removed and replaced with desert landscaping up to the first 10,000 square feet converted per property, per fiscal year. Beyond the first 10,000 square feet, SNWA will provide a rebate of \$1.50 per square foot of turf



conversion. The program has assisted the community upgrade more than 223 million square feet of lawn to water-efficient landscaping, saving more than 176 billion of gallons of water since the program began in 1999.

For residential properties (homeowners only), SNWA offers \$5.00 per square foot of grass that is removed and replaced with desert landscaping up to the first 10,000 square feet converted per property, per fiscal year. Beyond the first 10,000 square feet, SNWA will provide a rebate of \$3.50 per square foot of turf conversion. The project must be completed in 2024 for this limited time offer.

Additionally, as part of the Water Smart Landscape rebate program, the Tree Enhancement Program pays new applicants a bonus of \$100 for every new tree installed. The list of qualifying trees is based on a combination of factors related to climate resiliency, water efficiency, pathogen resistance, drought tolerance, maintenance, diversity, and invasiveness (<u>https://www.snwa.com/assets/pdf/wsl-tree-rebate-qualifying.pdf</u>).

In June 2021, the Nevada Legislature passed Assembly Bill (AB) 356, which directed the SNWA Board of Directors to develop a plan for the removal of nonfunctional turf in the Las Vegas Valley. The legislation prohibits Southern Nevada's water supply from watering existing unused grass on properties that are not zoned exclusively for single-family residences after January 1, 2027. According to SNWA, removing this nonfunctional turf can save about 9.5 billion gallons of water per year.

The City of Henderson is partnering with SNWA on the Water Smart Landscapes Rebate. COH is supplementing the SNWA Water Smart Landscapes program with an additional rebate of \$575 for Single-Family Residential homes. For the 2023-2024 permit year the City of Henderson rebate funding available was \$500,000, the rebate actual expenditure was \$953,784.00 for 1,079,637 sq ft of turf converted for an estimated water saving of 60,243,774 gallons annually.

Table 9-5 provides a summary of the Water Smart Landscapes Program during the current permit year and the prior three permit years.

| SNWA Water Smart Landscapes<br>Program Elements | 2023         | 2022         | 2021         | 2020         |
|-------------------------------------------------|--------------|--------------|--------------|--------------|
| Rebate Funding Available                        | \$37,408,611 | \$25,250,000 | \$25,048,889 | \$17,200,000 |
| Turf Converted (sq. ft.)                        | 12,591,938   | 12,643,927   | 5,999,043    | 4,524,720    |
| Estimated Water Savings (gallons)               | 702,630,140  | 705,531,127  | 334,746,599  | 252,479,376  |
| Actual Funding Expenditure                      | \$37,533,745 | \$31,420,105 | \$16,331,092 | \$12,023,946 |

 Table 9-5: SNWA Water Smart Landscapes Program Data for the Current Permit Year

 (2023-2024) and the Prior Three Permit Years

#### 9.2.7 Public Employee Supervisor Fertilizer / Pesticide Training (SC-3)

Permittees require supervisors responsible for personnel who commonly use fertilizers, pesticides, and herbicides to be trained. This primarily includes Public Works employees and Permittees' Parks and Recreation Department personnel responsible for landscaping maintenance. For the permit year, 100% of the supervisors or specialists responsible for herbicide and pesticide application for COH, CLV, CNLV, and CC were properly trained.



#### 9.2.8 Use of Alternate Products and Application Procedures (SC-4)

Permittees may experiment with or transition to use of "green" products to replace traditional fertilizers, pesticides, and herbicides. Permittees try alternative products and application procedures on an intermittent basis, when promising products or methods become available. As such, there may be no experimental applications to be reported in some years. Products and application procedures were reviewed during the permit year; there are no revisions to the lists of products or application procedures for any of the Permittees for the current permit year.

#### 9.2.9 Household Hazardous Waste Collection (SC-5)

Many common household chemicals can cause significant water quality degradation when disposed of improperly and allowed to access the MS4. These household chemicals are considered hazardous waste and may include: paint thinners, solvents, paint removers, gasoline, diesel fuel, lighter fluid, waste oil, batteries, garden chemicals, pool chemicals, cleaning fluids, and aerosol cans. Republic Services (the Las Vegas Valley's recycling and waste disposal company) continues to provide household hazardous waste collection and recycled oil services for all residents in the Las Vegas Valley. Household hazardous waste is limited to 40 pounds dry or 15 gallons liquid per customer (gasoline restricted to 5 gallons). Republic Services provides two drop-off locations (South Valley: 560 Cape Horn Drive, Henderson and North Valley: 333 W. Gowan Road, North Las Vegas) that are open on rotating weeks, Wednesday through Saturday from 9 am to 1 pm. Table 9-6 provides a summary of the quantities of household hazardous waste received by Republic Services, and presumably spared from storm drains, for the current permit year.

 Table 9-6: Republic Services Household Hazardous Waste Collection for the Current

 Permit Year (2023-2024)

| Hazardous Waste Type                                | Pounds Collected |
|-----------------------------------------------------|------------------|
| Aerosols                                            | 13,086           |
| Alkaline Batteries (Dry)                            | 589              |
| NiCd Batteries (Dry)                                | 275              |
| Oil based paint Liquid and Sludge                   | 9,871            |
| RCRA Exempt Pesticide Liquids in Consumer Packaging | 10,510           |
| Total                                               | 34,331           |

# 9.2.10 Ordinances Prohibiting Non-Stormwater Discharges and Littering (SC-7)

All municipal Permittees have ordinances prohibiting discharges of non-stormwater (except as expressly permitted) to the MS4. Local ordinances give the entities the authority to take enforcement action against illegal and illicit discharges, illegal dumping, littering, and other practices that may adversely affect the quality of water in the MS4, including those actions that have the "potential to pollute". Violations may be reported by code enforcement officers, public agency staff, or by general citizens through hotlines and Permittee websites.

Section 4.0 of this Annual Report identifies the relevant stormwater ordinance(s) for each municipal Permittee and discusses the review and revision actions taken by Permittees for the permit year. Under those ordinances, the Permittees are granted enforcement authority. Table 9-7 summarizes



the non-stormwater discharge enforcement activity undertaken by each Permittee for the current permit year and the prior three permit years.

| Municipal Permittee     | 2023-2024                                                                                                                                                             | 2022-2023                                                                                                                                                          | 2021-2022                                                                                                     | 2020-2021                                                                                                        |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| City of Henderson       | 81 enforcement<br>actions <sup>a</sup> (from 109<br>complaints)                                                                                                       | 43 enforcement<br>actions <sup>a</sup> (from 77<br>complaints)                                                                                                     | 39 enforcement<br>actions <sup>a</sup> (from 69<br>complaints)                                                | 38 enforcement<br>actions <sup>a</sup> (from<br>259 complaints)                                                  |  |
| City of Las Vegas       | 50 enforcement<br>actions <sup>b</sup> and 115<br>Biohazard ROW<br>Cleanup<br>Responses                                                                               | 83 enforcement<br>actions <sup>b</sup> and 93<br>Biohazard ROW<br>Cleanup<br>Responses                                                                             | 40 enforcement<br>actions <sup>b</sup> and 124<br>Biohazard ROW<br>Cleanup Responses                          | 60 enforcement<br>actions and 83<br>biohazard<br>cleanup<br>responses                                            |  |
| City of North Las Vegas | 5,400 enforcement<br>actions <sup>b</sup>                                                                                                                             | 2,377<br>enforcement<br>actions <sup>b</sup>                                                                                                                       | 2,142 enforcement<br>actions <sup>b</sup>                                                                     | 1,348<br>enforcement<br>actions <sup>b</sup>                                                                     |  |
| Clark County            | 3,272 solid waste<br>cases, 130<br>biohazard, 44<br>sewage, 10<br>chemical/fuel, 377<br>illegal dumping<br>complaints, and<br>181 enforcement<br>actions <sup>b</sup> | 3,162 solid waste<br>cases, 99<br>biohazard, 53<br>sewage, 7<br>chemical/fuel, 323<br>illegal dumping<br>complaints, and<br>48 enforcement<br>actions <sup>b</sup> | 2,247 solid waste<br>cases, 436 illegal<br>dumping complaints,<br>and 342 enforcement<br>actions <sup>b</sup> | 1,994 solid waste<br>cases, 263 illegal<br>dumping<br>complaints, and<br>133 enforcement<br>actions <sup>b</sup> |  |
| SWMP Target             | Maintain and enforce stormwater ordinances                                                                                                                            |                                                                                                                                                                    |                                                                                                               |                                                                                                                  |  |

## Table 9-7: Enforcement of Non-Stormwater Discharges and Litter Complaints / Responses for the Current Permit Year (2023-2024) and the Prior Three Permit Years

Notes:

<sup>a</sup> City of Henderson enforcement actions do not include: verbal warnings; for Desert Dumping and Illicit Discharge complaints, they do include notice of violations, certified letters to abate, misdemeanor citations, and fines

<sup>b</sup> Enforcement actions include: verbal warning, corrective notice, Notice of Violation, Notice to Abate, Cease and Desist Orders, and judicial actions

#### 9.2.11 Desert Dumping Controls (SC-8)

The Permittees have ordinances prohibiting dumping of materials in the desert surrounding the developed areas of the Las Vegas Valley. In addition to being unsightly and posing threats to the local ecology and human health, illegally dumped materials could be sources of water pollution if they come in to contact with stormwater (e.g., old vehicles, household waste, commercial and industrial waste, construction waste, landscaping refuse). Depending on the type and location of the observation, reports of illegal dumping may be referred to the BLM (data not reported in this Annual Report), the Southern Nevada Health District (SNHD), or the Clark County Public Response Office (CCPRO) for investigation and enforcement. Table 9-8 summarizes the desert dumping enforcement activity undertaken by each Permittee or relevant agency for the current permit year and the prior three permit years.



## Table 9-8: Enforcement of Desert Dumping Complaints / Responses for the Current Permit Year (2023-2024) and the Prior Three Permit Years

| Municipal Permittee     | 2023-2024                             | 2022-2023                                  | 2021-2022                             | 2020-2021                             |  |  |  |
|-------------------------|---------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------|--|--|--|
|                         | 5 enforcement                         | 7 enforcement                              | 2 enforcement                         | 0 enforcement                         |  |  |  |
| City of Henderson       | actions <sup>a</sup> from 12          | actions <sup>a</sup> from 64               | actions <sup>a</sup> from 57          | actions <sup>a</sup> from 9           |  |  |  |
|                         | complaints                            | complaints                                 | complaints                            | complaints                            |  |  |  |
| City of Las Vegas       | 0 enforcement<br>actions <sup>b</sup> | 0 enforcement<br>actions <sup>b</sup>      | 0 enforcement<br>actions <sup>b</sup> | 0 enforcement<br>actions <sup>b</sup> |  |  |  |
|                         | 373 enforcement                       | 258 enforcement                            | 335 enforcement                       | 164 enforcement                       |  |  |  |
| City of North Las Vegas | actions                               | actions                                    | actions                               | actions                               |  |  |  |
|                         | 3,272 solid waste                     | 3,162 solid waste                          | 2,247 solid waste                     | 1,994 solid waste                     |  |  |  |
| Clark County Public     | cases and 377                         | cases and 323                              | cases and 436                         | cases and 263                         |  |  |  |
| Response Office         | illegal dumping                       | illegal dumping                            | illegal dumping                       | illegal dumping                       |  |  |  |
|                         | complaints                            | complaints                                 | complaints                            | complaints                            |  |  |  |
|                         | 956 complaints;                       | 907 complaints;                            | 1,085 complaints;                     | 1,244 complaints;                     |  |  |  |
| Couthorn Nousdo Lloolth | 58 NOVs; 60                           | 60 NOVs; 44                                | 91 NOVs; 72                           | 61 NOVs; 89                           |  |  |  |
| Southern Nevada Health  | cases adjudicated;                    | cases adjudicated;                         | cases adjudicated;                    | cases adjudicated;                    |  |  |  |
| District                | \$120,500 in                          | \$82,000 in                                | \$119,200 in                          | \$74,350 in                           |  |  |  |
|                         | penalties                             | penalties                                  | penalties                             | penalties                             |  |  |  |
| SWMP Target             | N                                     | Maintain and enforce stormwater ordinances |                                       |                                       |  |  |  |

Notes:

<sup>a</sup> City of Henderson enforcement actions do not include: verbal warnings; for Desert Dumping and Illicit Discharge complaints, they do include notice of violations, certified letters to abate, misdemeanor citations, and fines

<sup>b</sup> CLV is called by SNHD to clean up desert dumping on CLV public property; CLV defers to SNHD for enforcement actions on private properties

#### 9.2.12 Dust Control Measures (SC-10)

To meet regulations associated with the Clean Air Act, agencies within the Las Vegas Valley enforce dust control measures at construction sites and stationary industrial sites that may generate significant dust (e.g., cement plants, rock crushing facilities). In the Las Vegas Valley, the Clark County Department of Environment and Sustainability (DES) has primary responsibility for assuring that air quality regulations are met. During the permit year the DES performed 7,224 dust inspections. Inspections resulted in 75 enforcement actions, with a total of \$250,500 in fines assessed.

#### 9.2.13 Trash Receptacle Enclosures (SC-14)

Municipal codes for each of the Permittees require that trash receptacles for commercial sites, industrial sites, and multi-family developments be enclosed, however they do not need to be covered. These code requirements reduce the potential for stormwater to contact pollutants such as organics and bacteria, and minimize the potential for litter to be blown from the trash receptacle into the MS4. Code requirements apply to all new development. During the permit year, plan reviews included reviews of trash enclosures for compliance with design standards.



# Section 10

Post-Construction Program for New Development and Significant Redevelopment

### 10 Post-Construction Program for New Development and Significant Redevelopment

Section B.5.6 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley includes requirements for a Post-Construction Program for New Development and Significant Redevelopment (NDSR). The purpose of the Post-Construction Program for NDSR is to utilize BMPs to address impacts to urban runoff water quality after construction activities have ceased.

There are no specific NPDES MS4 Permit requirements for a Watershed Program. However, the SWMP includes a description of the Las Vegas Valley Watershed Program, in response to the unique factors affecting the Las Vegas Valley and stakeholder interest in the development of such a program. As such, the Permittees report on their progress towards watershed-based BMPs in this section of the Annual Report.

#### **10.1 Overview of Best Management Practices**

Table 5-1 in Section 5 (Stormwater Management Approach) of this Annual Report identifies the BMPs employed by the Las Vegas Valley in the 2023-2024 MS4 permit year to meet permit requirements. Specifically, the Post-Construction Program for NDSR employed the following Source Control (SC), Site Design (SD), and Treatment Control (TC) BMPs, discussed in the following subsections:

- SC-18 Stormwater Outfall Map (discussed in Section 6.0 of this Annual Report)
- SC-35 Stormwater Outfall Map with Areas of NDSR
- SD-1 Open Space and Landscaping Objectives
- SD-2 Rural Land Overlay
- SD-3 Hillside Development Ordinances
- SD-4 Sustainability and Green Building Initiatives
- SD-5 Covered Fuel Areas
- SD-6 Raised Fuel Areas
- SD-7 Emergency Shut-off Switch and Shear Valve
- SD-8 Standard Drainage Design Criteria
- SD-9 Parking Lot Low Impact Development (LID) Measures
- SD-10 LID Measures
- TC-4 Sand / Oil Separator
- TC-5 Sand Filter

The following Watershed Program Treatment Control (TC) BMPs are also discussed:

- TC-1 Regional Detention Basins
- TC-2 Regional Channel Lining

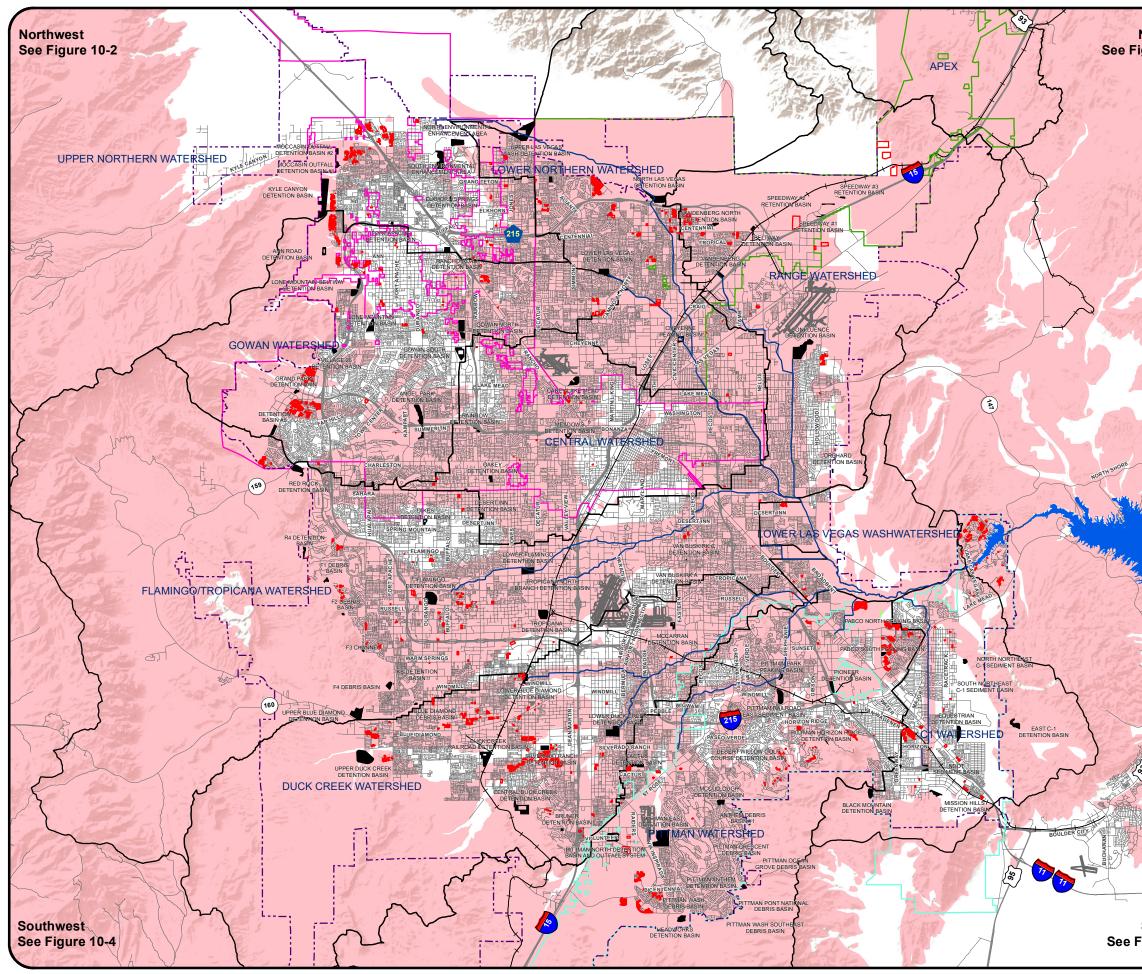


- TC-3 Las Vegas Wash Stabilization Structures
- TC-6 Regional Detention Basin Retrofit

#### 10.2 Description of Best Management Practices

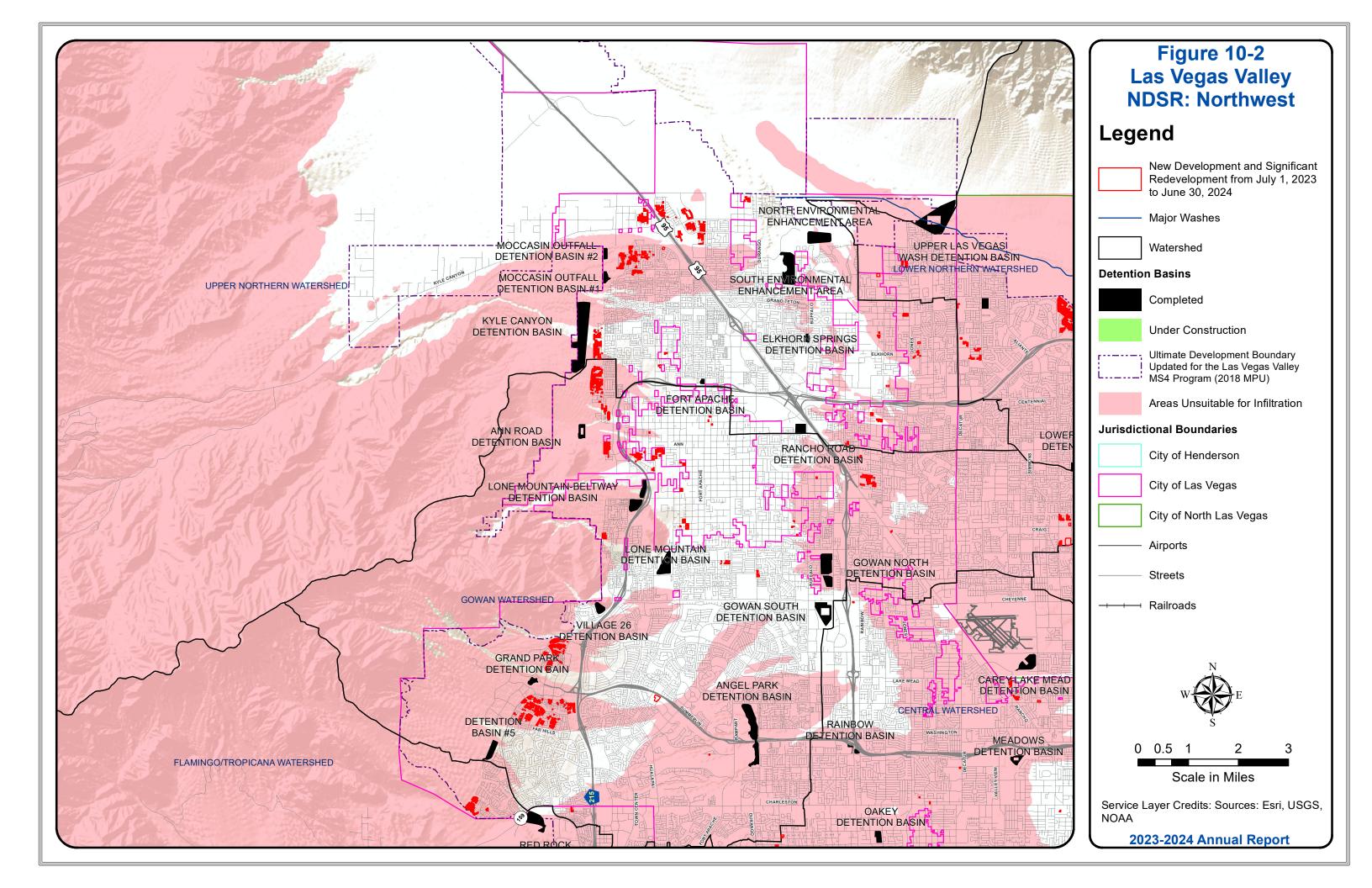
Table 10-1 provides a summary of the Permittees' activities for the current permit year that satisfy the Site Design and Treatment Control BMPs identified in the SWMP for the Post-Construction Program for NDSR.

| Redevelopment BMP Activity for the Current Permit Year (2023-2024) |                                                                                                                                                                                                                                       |                                                                                                                                                            |  |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| BMP                                                                | Purpose of the BMP                                                                                                                                                                                                                    | Permittee Activities                                                                                                                                       |  |  |  |  |
| SD-1 Open Space and<br>Landscaping Objectives                      | <ul> <li>Reduce runoff and resulting pollutant<br/>load</li> <li>Natural wash areas may provide<br/>natural runoff treatment</li> <li>Minimize impact of development<br/>immediately adjacent to active stream<br/>courses</li> </ul> | Development plans were reviewed for<br>compliance and developer agreements<br>used to define standards for master<br>planned communities, when applicable. |  |  |  |  |
| SD-2 Rural Land Overlay                                            | <ul> <li>Reduce runoff and resulting pollutant<br/>load</li> </ul>                                                                                                                                                                    | Development plans were reviewed for compliance.                                                                                                            |  |  |  |  |
| SD-3 Hillside<br>Development Ordinances                            | <ul> <li>Limit development or set strict criteria</li> <li>Reduce high flow rates from erosion<br/>susceptible areas</li> </ul>                                                                                                       | Development plans were reviewed for compliance.                                                                                                            |  |  |  |  |
| SD-4 Sustainability and<br>Green Building Initiatives              | <ul> <li>Reduce runoff and resulting pollutant<br/>load</li> <li>Provide onsite treatment for new<br/>developments</li> </ul>                                                                                                         | Green Building Initiatives promoted,<br>when applicable.                                                                                                   |  |  |  |  |
| SD-5 Covered Fuel Areas                                            | <ul> <li>Cover fueling areas with roofs or<br/>awnings</li> </ul>                                                                                                                                                                     | Standard practice. All new fueling areas were constructed with covered roofs or awnings.                                                                   |  |  |  |  |
| SD-6 Raised Fuel Areas                                             | <ul> <li>Raise fueling areas above the<br/>surrounding pavement</li> </ul>                                                                                                                                                            | Standard practice. All new fueling areas were constructed on a small concrete platform.                                                                    |  |  |  |  |
| SD-7 Emergency Shut-Off<br>Switch and Shear Valve                  | <ul> <li>Isolate fueling areas after spills by<br/>installing emergency shut-off switches<br/>`and valves at new gas stations</li> </ul>                                                                                              | Standard practice. All new gas stations<br>were constructed with emergency shut-<br>off switches or valves.                                                |  |  |  |  |
| SD-8 Standard Drainage<br>Design Criteria                          | <ul> <li>Provide drainage design criteria<br/>requiring stabilization of drainage ways<br/>to prevent erosion</li> <li>Implement Low Impact Development<br/>(LID) designs, when applicable</li> </ul>                                 | Development plans were reviewed for compliance.                                                                                                            |  |  |  |  |
| SD-9 Parking Lot LID<br>Measures                                   | <ul> <li>Reduce parking lot runoff and resulting<br/>pollutant load</li> <li>Implement LID requirements for<br/>medium and large parking lots</li> </ul>                                                                              | Development plans were reviewed for compliance.                                                                                                            |  |  |  |  |
| SD-10 LID Measures                                                 | <ul> <li>Minimize the impact of individual urban<br/>developments on stormwater runoff<br/>quantity and quality</li> </ul>                                                                                                            | LID measures promoted, when<br>applicable. Ordinances did not require<br>an update.                                                                        |  |  |  |  |
| TC-4 Sand / Oil Separator                                          | <ul> <li>Remove solids and floatables,<br/>including hydrocarbons from<br/>stormwater or wastewater</li> </ul>                                                                                                                        | <ul> <li>CC installed 6 sand / oil separators</li> <li>CNLV installed 1 sand / oil separator</li> <li>CLV installed 7 sand / oil separators</li> </ul>     |  |  |  |  |
| TC-5 Sand Filter                                                   | <ul> <li>Remove small particulates and some<br/>dissolved pollutants from stormwater</li> </ul>                                                                                                                                       | No sand filters were installed during the permit year                                                                                                      |  |  |  |  |
| SWMP Target                                                        | 100% compliance with design criteria, standards, and policies                                                                                                                                                                         |                                                                                                                                                            |  |  |  |  |

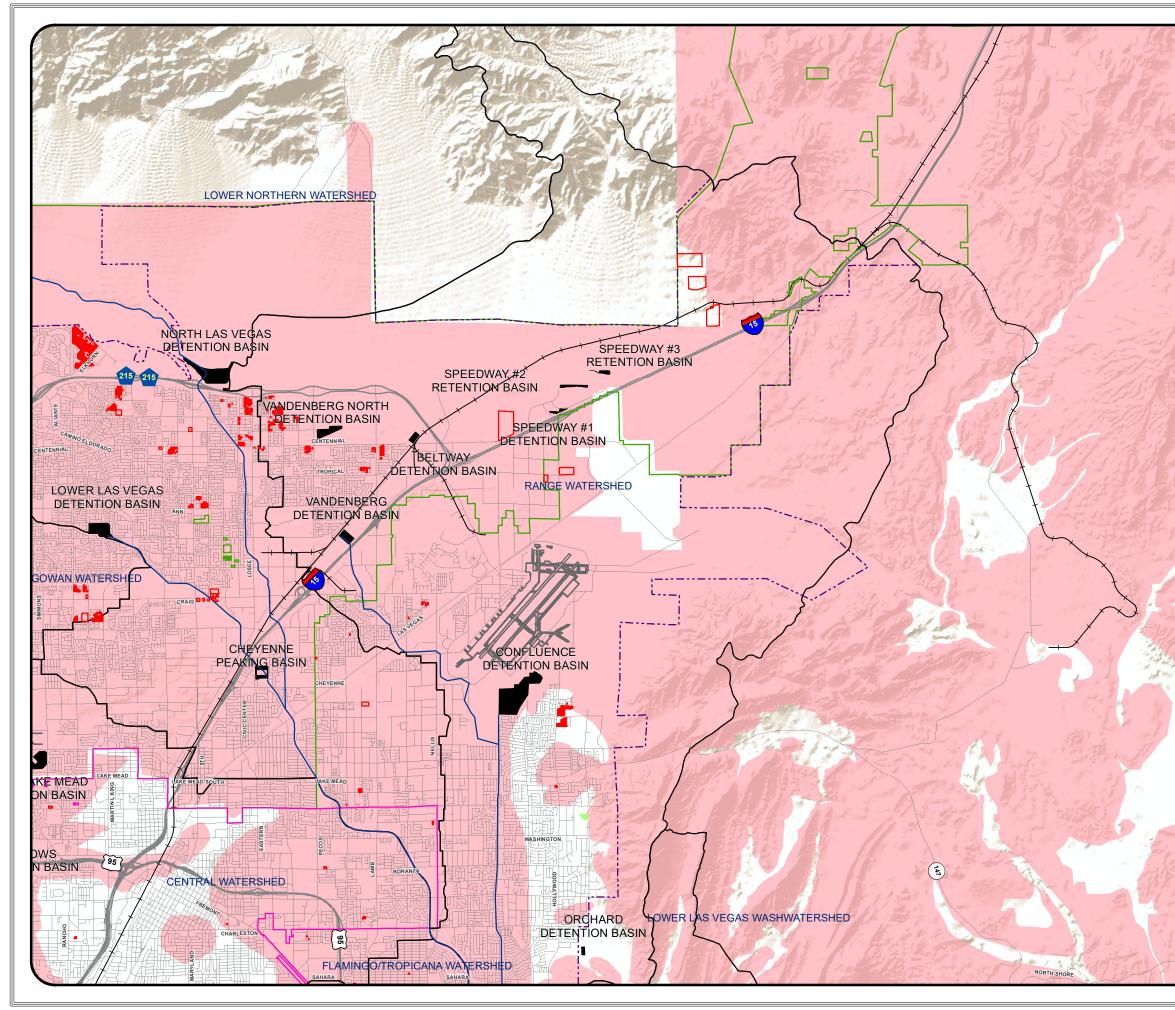

# Table 10-1: Post-Construction Program for New Development and Significant Redevelopment BMP Activity for the Current Permit Year (2023-2024)



#### 10.2.1 Stormwater Outfall Map with Areas of NDSR

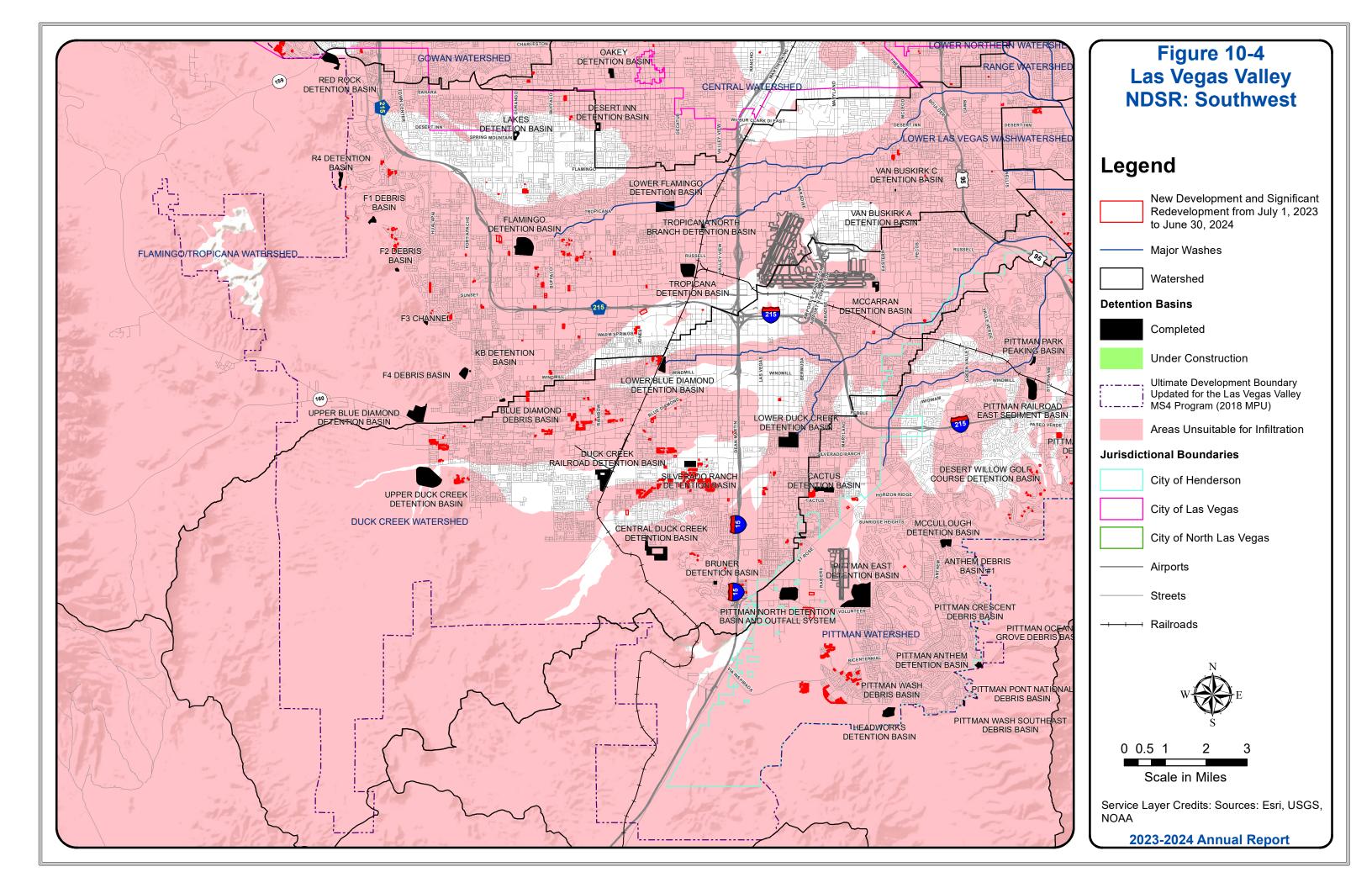

The Las Vegas Valley NPDES MS4 Permit requires the Permittees to prepare an annual map of NDSR within the permit area. Figure 10-1 presents a Valley-wide GIS map depicting areas, or approximate areas, of NDSR in the Las Vegas Valley for the permit year. Figure 10-2 through Figure 10-5 provide a more detailed view of four Las Vegas Valley regions (northwest, northeast, southwest, and southeast, respectively). These maps were prepared based on stormwater infrastructure data provided from the Permittees and parcel level data from Clark County. Data were compiled only for development projects that were completed (e.g., have received Certificates of Occupancy, Certificates of Completion) during the permit year.



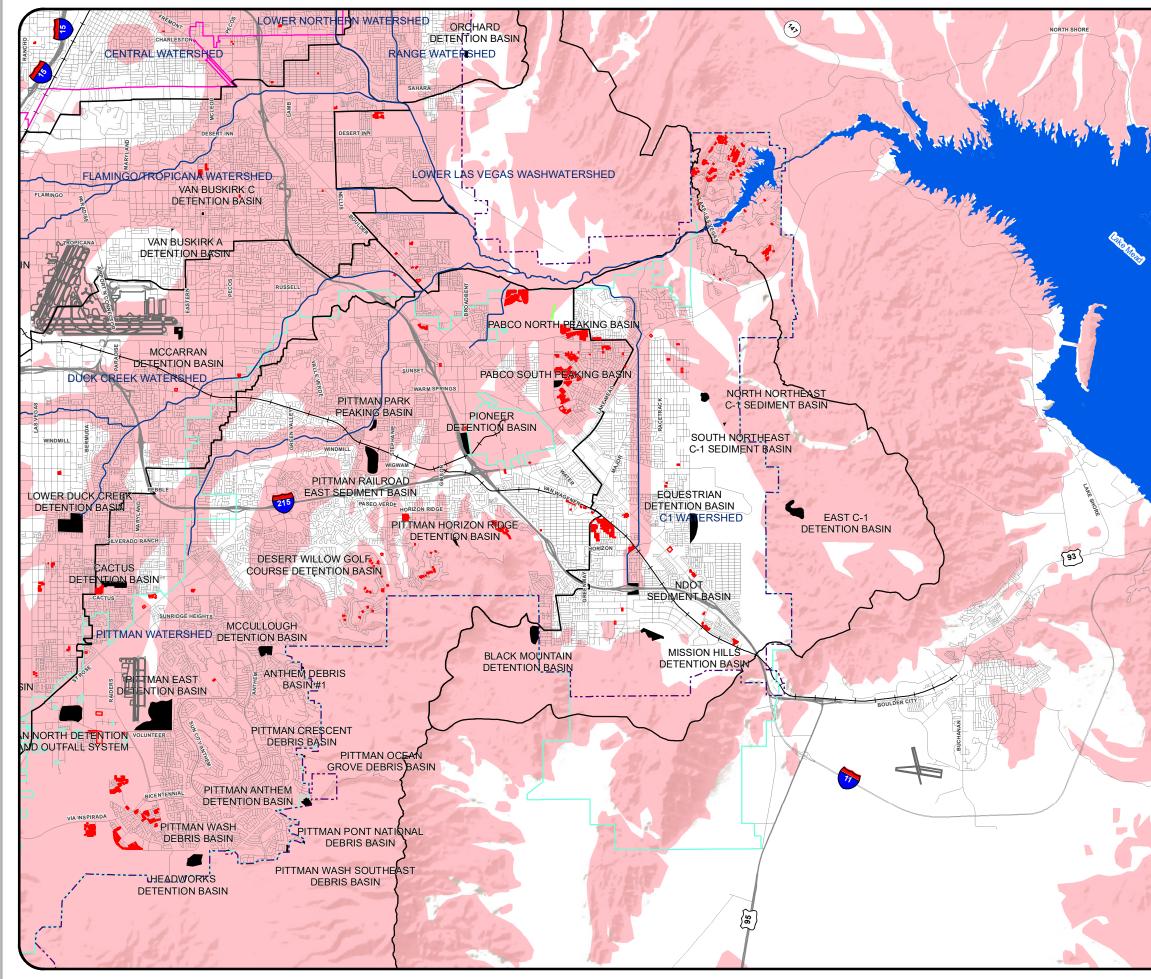



| Northeast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 10-1                                                                                                     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| igure 10-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Las Vegas Valley                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NDSR: Overview                                                                                                  |  |  |  |  |  |
| 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Legend                                                                                                          |  |  |  |  |  |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | New Development and Significant<br>Redevelopment from July 1, 2023 to<br>June 30, 2024                          |  |  |  |  |  |
| The state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ——— Major Washes                                                                                                |  |  |  |  |  |
| E-10 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Watershed                                                                                                       |  |  |  |  |  |
| and si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detention Basins                                                                                                |  |  |  |  |  |
| en aller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Completed                                                                                                       |  |  |  |  |  |
| and a start of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Under Construction                                                                                              |  |  |  |  |  |
| 10 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sup></sup> , Ultimate Development Boundary<br>↓ Updated for the Las Vegas Valley<br>└ MS4 Program (2018 MPU) |  |  |  |  |  |
| 1- million C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jurisdictional Boundaries                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City of Henderson                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City of Las Vegas                                                                                               |  |  |  |  |  |
| 1997 <b>- 1</b> 997 - 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | City of North Las Vegas                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ——— Airports                                                                                                    |  |  |  |  |  |
| K.s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Streets                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ─+──+ Railroads                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Areas Unsuitable for Infiltration                                                                               |  |  |  |  |  |
| and the second s | W E                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 2 4 6<br>Scale in Miles                                                                                     |  |  |  |  |  |
| Southeast<br>Figure 10-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Service Layer Credits: Sources: Esri, USGS, NOAA                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2023-2024 Annual Report                                                                                         |  |  |  |  |  |








| an Ry      | Figure 10-3<br>Las Vegas Valley<br>NDSR: Northeast                                     |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| E.         | Legend                                                                                 |  |  |  |  |  |
| 11/1       | New Development and Significant<br>Redevelopment from July 1, 2023<br>to June 30, 2024 |  |  |  |  |  |
| 1. 13      | ——— Major Washes                                                                       |  |  |  |  |  |
| The start  | Watershed                                                                              |  |  |  |  |  |
| AL BELLE   | Detention Basins                                                                       |  |  |  |  |  |
|            | Completed                                                                              |  |  |  |  |  |
|            | Under Construction                                                                     |  |  |  |  |  |
| EL         | Ultimate Development Boundary<br>Updated for the Las Vegas Valley<br>                  |  |  |  |  |  |
| ALL P      | Areas Unsutiable for Infiltration                                                      |  |  |  |  |  |
|            | Jurisdictional Boundaries                                                              |  |  |  |  |  |
| 3519       | City of Henderson                                                                      |  |  |  |  |  |
| 1. 19      | City of Las Vegas                                                                      |  |  |  |  |  |
| State 1    | City of North Las Vegas                                                                |  |  |  |  |  |
|            | ——— Airports                                                                           |  |  |  |  |  |
|            | Streets                                                                                |  |  |  |  |  |
|            | Railroads                                                                              |  |  |  |  |  |
| The second | W E<br>S                                                                               |  |  |  |  |  |
|            | 0 0.5 1 2 3<br>Scale in Miles                                                          |  |  |  |  |  |
| 1          | Service Layer Credits: Sources: Esri, USGS, NOAA                                       |  |  |  |  |  |
|            | 2023-2024 Annual Report                                                                |  |  |  |  |  |









|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure 10-5                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |  |  |  |  |
| 1.7.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Las Vegas Valley                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NDSR: Southeast                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |  |  |  |  |
| The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Legend                                              |  |  |  |  |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |  |  |  |  |
| i de la companya de l | New Development and Significant                     |  |  |  |  |
| -A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Redevelopment from July 1, 2023<br>to June 30, 2024 |  |  |  |  |
| S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 Julie 30, 2024                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ——— Major Washes                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Watershed                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Watershed                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detention Basins                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completed                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Under Construction                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ultimate Development Boundary                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logian Line                                         |  |  |  |  |
| Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |  |  |  |  |
| ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Areas Unsuitable for Infiltration                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jurisdictional Boundaries                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City of Henderson                                   |  |  |  |  |
| 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City of Las Vegas                                   |  |  |  |  |
| a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | City of North Las Vegas                             |  |  |  |  |
| Viel Soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ——— Airports                                        |  |  |  |  |
| The star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Streets                                             |  |  |  |  |
| ALC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |  |  |  |  |
| 5 - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -++ Railroads                                       |  |  |  |  |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEEE                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ś                                                   |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0.5 1 2 3                                         |  |  |  |  |
| 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |  |  |  |  |
| Fr - 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scale in Miles                                      |  |  |  |  |
| 8:111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Service Layer Credits: Sources: Esri, USGS,         |  |  |  |  |
| 179 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOAA                                                |  |  |  |  |
| 1,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2023-2024 Annual Report                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |  |  |  |  |



#### 10.2.2 Areas of NDSR in Watersheds with Impaired Waterbodies

As shown in Figure 10-1 through Figure 10-5, during the permit year, NDSR occurred in watersheds that convey water to tributaries listed as impaired waterbodies on the 303(d) list. Construction of new development was not likely to impact the segments listed for boron or fluoride. Table 10-2 shows the acreage of NDSR in the watersheds that drain to tributaries that are listed for TDS, TSS, temperature, iron, *E. Coli* and/or selenium.

| Watershed                   | Impaired Waterbody Impairment Parameter                                                 |                                                  | NDSR (Acres) |  |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|--------------|--|--|--|--|--|
| Central                     | Las Vegas Creek - From<br>its origin to the Las Vegas<br>Wash                           | Selenium                                         | 14.8         |  |  |  |  |  |
| Duck Creek                  | Duck Creek - From its<br>origin to the Las Vegas<br>Wash                                | Selenium, Temperature,<br>and TDS                | 225.7        |  |  |  |  |  |
| Flamingo / Tropicana        | Ana Flamingo Wash - From its<br>origin to the Las Vegas Selenium, iron, and TSS<br>Wash |                                                  | 126.5        |  |  |  |  |  |
| Range                       | Sloan Channel - From<br>North Las Vegas Blvd. to<br>the Las Vegas Wash                  | Selenium                                         | 282.7        |  |  |  |  |  |
| Upper and Lower<br>Northern | Las Vegas Wash - Above<br>wastewater treatment<br>plants                                | <i>E. Coli</i> , Iron, Selenium,<br>TDS, and TSS | 294.8        |  |  |  |  |  |

| Table 10-2: NDSR Acreage in Watersheds with Impaired Waterbodies for the Curren | t |
|---------------------------------------------------------------------------------|---|
| Permit Year (2023-2024)                                                         |   |

In addition to depicting areas of NDSR, Figure 10-1 through Figure 10-5 show the portions of the Las Vegas Valley watershed previously identified to be unsuitable for infiltration. In these areas, NDSR may induce infiltration to shallow alluvial groundwater along stream courses, which could affect TDS and selenium loads in listed waterbodies. As such, BMP practices adopted for NDSR by the Permittees are designed to minimize the impacts of these pollutants by preventing or discouraging infiltration measures.

#### 10.2.3 Water Quality Capture Volume

The Permittees utilize a regional approach to manage water quality. One of the regional strategies includes the effective use of detention basins as BMPs. The status of design and construction projects for new or retrofitted regional detention basins is discussed in more detail later in this section.

New or modified regional detention basins incorporate extended detention basins (EDBs) or other low flow features to improve water quality. The low flow features and the associated proposed construction schedules are discussed in detail in the SWMP Technical Memorandum (TM) IV.16 Strategic Plan for Use of Regional Detention Basins for Water Quality Management. The volume of water captured and treated by these features is referred to as the water quality capture volume (WQCV) in the regional detention basins.

Increasing development within the Las Vegas Valley watersheds increases the demand on regional detention basins. The required capture volume (RCV), which represents the stormwater quality requirement created by additional acres of NDSR, is compared to the WQCV provided by regional detention basins.

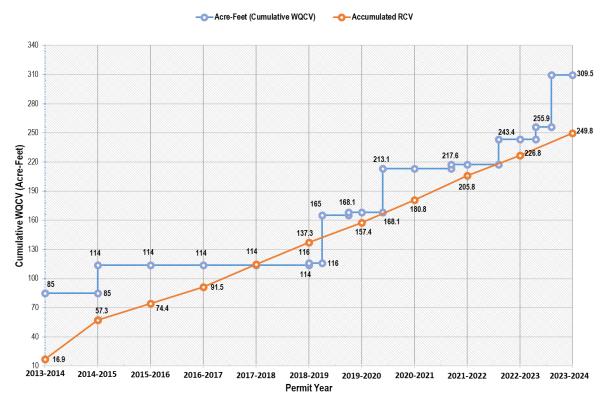


During the permit year, two detention basins were upgraded to include low flow features, Gowan North (53.6 AF) and Oakey (12.5 AF). This increased the total WQCV of the Las Vegas Valley by 66.1 AF.

Table 10-3 provides a summary of estimated NDSR acreage, the RCV, and the WQCV for the current permit year and the prior three permit years, as well as cumulative totals summed from the beginning of the Post-Construction Program for NDSR in 2013.

Figure 10-6 depicts the progress of the WQCV implementation schedule. For planning purposes, as the RCV reaches 85% of the cumulative WQCV, design of the next new detention basin or retrofit is initiated, if not already in progress. During the 2023-2024 permit year, four detention basins were under design (Airport Peaking basin, North Las Vegas, Van Buskirk-Paradise, and Meadows) and three under construction (Pabco North Peaking Basin, Jim McGaughey, and Pittman East).

Table 10-3: RCV vs WQCV for NDSR for the Current Permit Year (2023-2024) and the Prior Three Permit Years


| Metric                                        | 2023-2024 |                         | 2022-2023 |                         | 2021-2022 |                         | 2020-2021 |                         |
|-----------------------------------------------|-----------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|-------------------------|
|                                               | Annual    | Cumulative <sup>a</sup> |
| NDSR <sup>b</sup><br>[acres]                  | 1,549     | 20,672                  | 1,575     | 19,123                  | 1,878     | 17,548                  | 1,749     | 15,670                  |
| WQCV in<br>Regional<br>DBs [acre-<br>feet]    | 66.1      | 309.5                   | 25.8      | 243.4                   | 4.5       | 217.6                   | 45        | 213.1                   |
| RCV<br>[acre-feet]                            | 20.66     | 247.47                  | 21.01     | 226.81                  | 25.05     | 205.8                   | 23.33     | 180.75                  |
| Net<br>WQCV<br>(WQCV -<br>RCV)<br>[acre-feet] | 45.44     | 62.03                   | 4.79      | 16.59                   | -20.55    | 11.8                    | 21.67     | 32.35                   |

Notes:

<sup>a</sup> Cumulative values presented begin from NDSR program implementation in the 2013-2014 permit year

<sup>b</sup> Includes parcels with areas less than 1 acre that fall outside of the scope of the NDSR Program









#### 10.2.4 Regional Detention Basins (TC-1)

Regional flood control detention basins are a key component of the MS4 Watershed Program. Due to the infrequency, localization, and variable magnitude of storm events in the Las Vegas Valley, the use of regional detention basins to capture and regulate runoff and associated pollutants is more efficient than the use of smaller scale facilities. Table 10-4 summarizes the status of regional detention basins designed and constructed during the current permit year and the prior three permit years.

| Metric Number                                    |   | 2023-2024                                                                                                     | 2022-2023 |                                                                                  | 2021-2022 |                                                                            | 2020-2021 |                                                   |
|--------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------|-----------|---------------------------------------------------|
|                                                  |   | Details                                                                                                       | Number    | Details                                                                          | Number    | Details                                                                    | Number    | Details                                           |
| Detention<br>Basins in<br>Design                 | 4 | Van Buskirk-<br>Paradise, Airport<br>Peaking Basin,<br>Meadows <sup>a</sup> , North<br>Las Vegas <sup>a</sup> | 3         | Meadows <sup>a</sup> , Airport<br>Peaking Basin, North<br>Las Vegas <sup>a</sup> | 4         | Airport Peaking Basin,<br>Jim McGaughey,<br>Paradise, Meadows <sup>a</sup> | 3         | Airport Peaking Basin, Jim<br>McGaughey, Paradise |
| Detention<br>Basins<br>Completed<br>Design       | 0 | NA                                                                                                            | 2         | Paradise, Jim<br>McGaughey                                                       | 2         | Silverado Ranch,<br>Pittman East <sup>a</sup>                              | 2         | Speedway 2 <sup>a</sup> , Silverado<br>Ranch      |
| Detention<br>Basins<br>Under<br>Construction     | 3 | Jim McGaughey,<br>Pittman East <sup>a</sup> ,<br>Pabco North Peaking<br>Basin                                 | 2         | Pabco North Peaking<br>Basin, Pabco South<br>Peaking Basin                       | 1         | Grand Park                                                                 | 2         | Grand Park, Beltway                               |
| Detention<br>Basins<br>Completed<br>Construction | 3 | Gowan North <sup>a</sup> ,<br>Oakey <sup>a</sup> , Pabco<br>South Peaking Basin                               | 2         | Grand Park,<br>Silverado Ranch                                                   | 2         | Beltway, Speedway 2 <sup>a</sup>                                           | 1         | Vandenberg North                                  |

#### Table 10-4: Status of Regional Detention Basins for the Current Permit Year (2023-2024) and the Prior Three Permit Years

Notes:

NA = Not Applicable

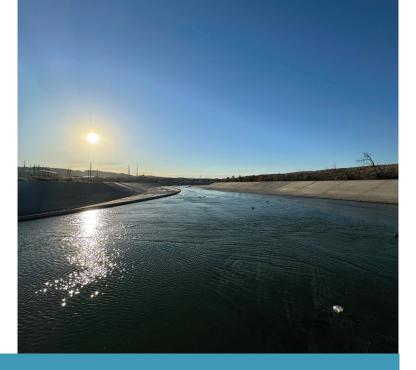
<sup>a</sup>Addition of low flow features



#### 10.2.5 Regional Channel Lining

The Hydrologic Criteria and Drainage Design Manual requires all regional flood control channels to be stabilized in some manner. In addition to improving hydraulic performance, channel lining eliminates channel erosion that would contribute to downstream sediment load, TSS, and turbidity. Slopes in the Las Vegas Valley are generally moderate-to-steep, flow velocities are high, and soils are erodible; therefore, most channels are stabilized using concrete lining. The CCRFCD prefers providing concrete lining for regional flood control channels to minimize capital costs, right-of-way requirements, and maintenance costs. As a result of the CCRFCD policy, very few channels within the existing developed area are unlined. However, occasionally unlined channels are replaced. Table 10-5 provides a summary of regional channel lining projects completed during the current permit year and the prior three permit years.

Table 10-5: Miles of Regional Channel Stabilization for the Current Permit Year (2023-2024) and the Prior Three Permit Years


| Metric                                                                                                                             | 2023-2024 | 2022-2023 | 2021-2022 | 2020-2021 |
|------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| Miles of Regional Channel Stabilized (e.g.,<br>replacing an unlined channel with an armored<br>channel or reinforced concrete box) | 0.037     | 0.25      | 2.4       | 2.2       |

#### 10.2.6 Las Vegas Wash Stabilization Structures (TC-3)

Over the past 40 years, erosion in the Las Vegas Wash due to treated wastewater discharges from WWTP's and urban stormwater runoff has resulted in dramatic channel down cutting and reduction in wetland areas from approximately 2,000 acres to 200 acres. This in turn contributed to downstream water quality degradation in the Las Vegas Wash and Las Vegas Bay. SNWA, through the Las Vegas Wash Coordination Committee (LVWCC), was delegated responsibility for constructing grade control structures in sections where the Las Vegas Wash is eroding. SNWA erosion control structures (i.e., weirs) and projects have been completed.

#### 10.2.7 Regional Detention Basin Retrofit (TC-6)

Regional detention basins are designed to reduce peaks from large flood events. In most cases, small runoff events pass through the regional detention basins with relatively little attenuation and little removal of constituents. The SWMP TM IV.16 was prepared to identify existing detention basins that could benefit from low flow feature retrofits and to plan low flow features in the construction of new detention basins, which would result in enough total WQCV to address the runoff from NDSR. Low flow features are tracked as part of TC-1, Regional Detention Basins.



# Section 11

Illicit Discharge Detection and Elimination Program



### 11 Illicit Discharge Detection and Elimination Program

Section B.5.7 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley includes requirements for an Illicit Discharge Detection and Elimination Program. The Illicit Discharge Detection and Elimination (IDDE) Program consists of four components: field screening, field inspections, public reporting opportunities, and a spill response strategy. The components are designed to detect and eliminate illicit discharges and improper disposal into the MS4.

Essentially all aspects of the MS4 management program are directed toward reducing or eliminating illicit and illegal discharges to the MS4 in some way. Accordingly, all BMPs in the Las Vegas Valley MS4 program are connected directly or indirectly to IDDE. This section of the Annual Report focuses on BMPs that specifically target illicit discharges that are not discussed in other sections of the report.

#### 11.1 Overview of Best Management Practices

Table 5-1 in Section 5 (Stormwater Management Approach) of this Annual Report identifies the BMPs employed by the Las Vegas Valley in the 2023–2024 MS4 permit year, to meet permit requirements. Specifically, the Illicit Discharge Detection and Elimination Program employed the following Source Control (SC) BMPs, discussed in the following subsections:

- SC-12 Spill Control Prevention Plan
- SC-16 Regional Water Quality Planning
- SC-19 Sanitary Sewer Line Inspection and Replacement Program
- SC-26 Storm Channel Inspections
- SC-29 Stormwater-Related Complaint Response

#### 11.2 Description of Individual Best Management Practices

#### 11.2.1 Spill Control Prevention Plan (SC-12)

Spill Control Prevention Plans are plans to prevent and contain spills of hazardous materials that would impact downstream water quality. The Permittees currently have spill prevention and response regulation programs in place through their fire departments and contracts with special emergency response contractors. These regulations and programs are authorized in response to other State requirements but provide benefits to the MS4 program.

#### 11.2.2 Regional Water Quality Planning (SC-16)

Regional water quality planning activities are performed by a variety of agencies and organizations including the SNWA, the Las Vegas Valley Watershed Advisory Committee (LVVWAC), the Las Vegas Wash Coordination Committee (LVWCC), and the Lake Mead Water Quality Forum (LMWQF). These regional coalitions allow for the coordination of activities designed to benefit stormwater quality throughout the Las Vegas Valley. The Permittees participate in these meetings.



During the permit year, the LMWQF did not hold any quarterly meetings. However, there were three meetings for the LVVWAC and two meetings for the LVWCC.

# 11.2.3 Sanitary Sewer Line Inspection and Replacement Program (SC-19)

This program is intended to prevent exfiltration from the sanitary sewer system to the MS4, by assuring the integrity of the sanitary sewer collection system. This program focuses on assessing both maintenance and structural deficiencies, as well as identifying areas of infiltration, which in some instances could lead to exfiltration. Table 11-1 provides a summary of sanitary sewer lines inspected and repaired for the current permit year and the prior three permit years.

| the Current Fernit Tear (2023-2024) and the Frior Three Fernit Tears |                                     |                                                               |                                                               |                                                    |                                                    |  |  |  |  |
|----------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Permittee                                                            | Metric                              | 2023-2024                                                     | 2022-2023                                                     | 2021-2022                                          | 2020-2021                                          |  |  |  |  |
| City of                                                              | Inspected [miles]                   | 93 miles<br>10,087<br>manholes                                | 75 miles<br>6,138 manholes                                    | 95 miles<br>6,124 manholes                         | 96 miles<br>7,412 manholes                         |  |  |  |  |
| Henderson                                                            | Repaired [miles repaired or jetted] | 479                                                           | 243                                                           | 246                                                | 240                                                |  |  |  |  |
| City of Las                                                          | Inspected [miles]                   | 159 miles<br>11 sewer<br>laterals<br>televised<br>88 manholes | 148 miles<br>25 sewer<br>laterals<br>televised<br>47 manholes | 31 sewer<br>laterals<br>televised<br>28 manholes   | 147 miles<br>19 manholes                           |  |  |  |  |
| Vegas                                                                | Repaired [miles repaired or jetted] | 445 miles<br>88 manholes                                      | 2.5 miles<br>repaired<br>421.5 miles<br>47 manholes           | 574 miles<br>28 manholes                           | 567                                                |  |  |  |  |
| City of North                                                        | Inspected [miles]                   | 155 miles <sup>a</sup><br>880 manholes                        | 107 miles <sup>a</sup><br>854 manholes                        | 100 miles <sup>a</sup><br>812 manholes             | 51 miles <sup>a</sup><br>891 manholes              |  |  |  |  |
| Las Vegas                                                            | Repaired [miles repaired or jetted] | 0                                                             | 0                                                             | 83 LF                                              | 1.82                                               |  |  |  |  |
| Clark County                                                         | Inspected [miles]                   | 98 miles<br>24,534<br>manholes                                | 111                                                           | 124 miles<br>352 manholes                          | 123 miles<br>179 manholes                          |  |  |  |  |
|                                                                      | Repaired [miles repaired or jetted] | 475 miles, 51<br>manholes                                     | 722 miles, 64<br>manholes                                     | 754 Miles jetted<br>and 89 repairs,<br>64 manholes | 764 Miles jetted<br>and 69 repairs, 64<br>manholes |  |  |  |  |
| SWMP Target                                                          | Minimize sanitary sewer overflows   |                                                               |                                                               |                                                    |                                                    |  |  |  |  |

# Table 11-1: Summary of Sanitary Sewer Line Inspection and Replacement Activity for the Current Permit Year (2023-2024) and the Prior Three Permit Years

Note:

N/A: Not Available / Not Analyzed

<sup>a</sup> This number includes miles inspected and/or jetted

#### 11.2.4 Storm Channel Inspections (SC-26)

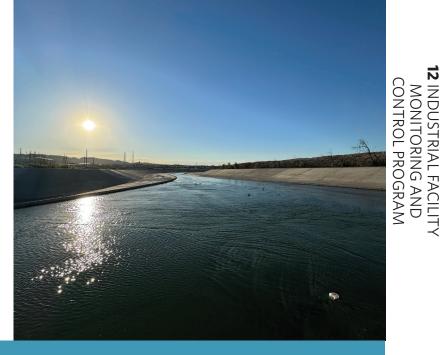
Semi-annual inspections of open storm channels and detention basins include, but are not limited to, inspecting for evidence of illicit discharges and illegal dumping. MS4 facilities were inspected by the Permittees in Fall 2023 and Spring 2024. Inspections included visually inspecting exposed storm channels and detention basins, to look for evidence of non-stormwater discharges. Emphasis was placed on those areas that had a reasonable potential for containing illicit discharges, exfiltration from the sanitary sewer system, or other sources of non-stormwater. Heavy sediment loads that may be associated with construction site runoff were also inspected.

In general, dry weather flows in Las Vegas Valley MS4 channels were minor. Erosion, gravel/silt, and debris were commonly observed along the channels and within detention basins. Vegetation,



trash, debris, and graffiti were commonly found in channels inspected by City of North Las Vegas, City of Henderson, and City of Las Vegas. Clark County commonly observed vegetation, gravel/silt, and debris during the inspections.

### 11.2.5 Stormwater-Related Complaint Response (SC-29)


The Permittees provide several avenues by which the public can report potential illicit discharges to the MS4, including:

- Websites
  - The Permittees' collective SQMC website, <u>www.LVstormwater.com</u>, has a link for reporting illicit discharges. This link gives contact information for reporting illicit discharges and clogged storm drains.
  - Individual Permittee websites also include links for reporting illicit discharges or illegal dumping within their jurisdiction.
- Southern Nevada Health District (SNHD)
  - The SNHD has the authority to enforce ordinances prohibiting dumping of solid waste, semisolid waste, liquid waste, and sewage to the Las Vegas Valley MS4. The public can call SNHD and report problems directly or can submit a complaint form for reporting evidence of illegal dumping via their website: www.southernnevadahealthdistrict.org/solid-waste/illegal-dumping.php
- Clark County Public Response Office
  - The CCPRO receives public complaints related to illegal dumping and other ordinance violations and is empowered to respond and address these problems via their website: <u>http://www.clarkcountynv.gov/administrative-</u> services/pro/Pages/default.aspx
- Direct Contact with Permittees
  - Each of the Permittees receives direct reports from citizens reporting dumping, illegal discharges of non-stormwater to the drainage system, maintenance problems, and other activities that may affect water quality. The CLV, CNLV, and COH follow up on these complaints within their jurisdiction; Clark County follows up on complaints in unincorporated Clark County. The CCRFCD also routinely receives reports through its citizen contact system, often in response to its PSAs. Complaints are directed to the appropriate jurisdiction for resolution.

Table 11-2 provides a summary of the number of reported stormwater-related complaints for the current permit year and the prior three permit years.

| Permittee                  | 2023-2024 | 2022-2023                                         | 2021-2022 | 2020-2021 |  |  |  |
|----------------------------|-----------|---------------------------------------------------|-----------|-----------|--|--|--|
| City of Henderson          | 208       | 177                                               | 197       | 50        |  |  |  |
| City of Las Vegas          | 50        | 83                                                | 61        | 60        |  |  |  |
| City of North Las<br>Vegas | 18        | 19                                                | 18        | 20        |  |  |  |
| Clark County               | 683       | 596                                               | 535       | 496       |  |  |  |
| SWMP Target                | Re        | Respond to 100% of stormwater-related complaints. |           |           |  |  |  |

# Table 11-2: Stormwater-Related Complaints Received for the Current Permit Year (2023-2024) and the Prior Three Permit Years



# Section 12

Industrial Facility Monitoring and Control Program



# 12 Industrial Facility Monitoring and Control Program

Section B.5.8 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley includes requirements for an Industrial Facility Monitoring and Control Program. Activities conducted under the Las Vegas Valley Industrial Facility Monitoring and Control Program consisted of identifying industrial facilities that could be potential pollutant sources, conducting inspections of industrial facilities, and conducting an ongoing training program for local industrial facility inspectors. This program is intended to complement the separate industrial facility permitting program conducted by NDEP.

# 12.1 Overview of Best Management Practices

Table 5-1 in Section 5 (Stormwater Management Approach) of this Annual Report identifies the BMPs employed by the Las Vegas Valley in the 2023-2024 MS4 permit year to meet permit requirements. Specifically, the Industrial Facility Monitoring and Control Program employed the following Source Control (SC) BMPs, discussed in the following subsections:

- SC-6 Commercial / Industrial Housekeeping Practices
- SC-9 Grease Interceptor Program
- SC-13 Industrial Pretreatment Program
- SC-15 Southern Nevada Health District Inspections
- SC-23 Industrial Facility Stormwater Inspections
- SC-24 Industrial Facility Stormwater Inventory
- SC-25 Industrial Facility Stormwater Inspection Checklist
- SC-28 Industrial Facility Inspector Training Workshops

# 12.2 Description of Individual Best Management Practices

## 12.2.1 Commercial / Industrial Housekeeping Practices (SC-6)

Commercial and industrial facility operators are encouraged to apply good housekeeping practices in exterior areas, such that stormwater runoff would not contact pollutant sources and contribute a substantial load of pollutants to the MS4. In addition, municipal codes for each of the municipal Permittees require that all activities and operations at industrial facilities and commercial facilities where hazardous materials and chemicals are used, be conducted in, and contained by enclosed structures. Permittees promote good commercial / industrial facility maintenance by providing facility owners with information regarding good housekeeping practices during inspections and through the <u>www.LVstormwater.com</u> website.

## 12.2.2 Grease Interceptor Program (SC-9)

Municipal Permittees have existing ordinances requiring proper removal and disposal of grease from grease interceptors in restaurants and industrial facilities. Clogged grease interceptors could allow



wastewater to be directed to the MS4. Public wastewater treatment service providers inspect over 2,000 restaurants and industrial facilities each year. BMPs are enforced consistently among each of the Permittees in the Las Vegas Valley. Table 12-1 provides a summary of the number of inspections the Permittees completed during the current permit year and the prior three permit years.

| Permittee               | 2023-2024                         | 2022-2023 | 2021-2022 | 2020-2021 |
|-------------------------|-----------------------------------|-----------|-----------|-----------|
| City of Henderson       | 177                               | 110       | 106       | 105       |
| City of Las Vegas       | 847                               | 919       | 863       | 1,171     |
| City of North Las Vegas | 369                               | 599       | 904       | 269       |
| Clark County            | 5,211                             | 4,004     | 6,221     | 8,531     |
| SWMP Target             | Minimize sanitary sewer overflows |           |           |           |

 Table 12-1: Number of Grease Interceptor Inspections Performed for the Current Permit

 Year (2023-2024) and the Prior Three Permit Years

## 12.2.3 Industrial Pretreatment Program (SC-13)

Permittees have industrial pretreatment programs associated with their wastewater systems. All new qualifying industrial facilities must comply with the industrial pretreatment program and are subject to periodic pretreatment inspections. Activities associated with this BMP are reported separately under individual NPDES discharge permits.

## 12.2.4 Southern Nevada Health District Inspections (SC-15)

The Southern Nevada Health District (SNHD) performs inspections of commercial and industrial facilities that are conditionally exempt small quantity generators of hazardous waste (CESQG). These are smaller facilities that do not fall under the State's hazardous materials regulations. In addition, the SNHD Solid Waste and Compliance Division inspect several underground storage tanks (UST) and permitted disposal facilities (PDF). SNHD sets the policies and procedures to comply with the BMP. Table 12-2 provides a summary of the number of inspections the SNHD completed during the current permit year and the prior three permit years.

| for the Current Permit Year (2023-2024) and the Prior Three Permit Years |           |           |           |           |  |  |  |  |
|--------------------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|--|--|
| Inspection Type                                                          | 2023-2024 | 2022-2023 | 2021-2022 | 2020-2021 |  |  |  |  |
| Permitted Disposal Facilities                                            | 233       | 235       | 238       | 225       |  |  |  |  |
| Underground Storage Tank                                                 | 659       | 877       | 734       | 1,185     |  |  |  |  |
| Waste Management Audit                                                   | 3,155     | 3,086     | 3,424     | 3,459     |  |  |  |  |

 Table 12-2: Summary of Southern Nevada Health District Industrial Facility Inspections

 for the Current Permit Year (2023-2024) and the Prior Three Permit Years

## 12.2.5 Industrial Facility Stormwater Inspections (SC-23)

The Permittees are required to conduct inspections of industrial facilities that are included on their industrial facility inventories (discussed in the next subsection). Annual inspections are required for industrial facilities that belong to one of four categories: 1) Industrial facilities subject to Section 313 of Title III of the Superfund Amendments and Reauthorization Act (SARA) of 1986; 2) Municipal landfills: 3) Hazardous waste, treatment, disposal, and recovery facilities; and 4) Other industrial facilities determined by the Permittees to be contributing a substantial pollutant load to the MS4. The Permittees did not identify any Category 4 industrial facilities during the permit year.

Industrial facilities were inspected for compliance with stormwater BMPs, however they are also regularly inspected as a requirement of other regulatory programs (e.g., pretreatment inspections). As such, in Table 12-3, the Permittees report the total number of industrial facility inspections



performed based on permit requirements, as well as the number of follow-up actions taken during the current permit year and the prior three permit years.

| Permittee                  | Metric                            | 2023-2024         | 2022-2023                 | 2021-2022           | 2020-2021           |
|----------------------------|-----------------------------------|-------------------|---------------------------|---------------------|---------------------|
| City of                    | Number of<br>Inspections          | 114               | 142                       | 146                 | 109                 |
| City of<br>Henderson       | Number of<br>Follow-Up<br>Actions | 2                 | 12                        | 13                  | 9                   |
| City of Loo                | Number of<br>Inspections          | 189               | 207                       | 301                 | 264                 |
| City of Las<br>Vegas       | Number of<br>Follow-Up<br>Actions | 3                 | 8                         | 7                   | 16                  |
|                            | Number of<br>Inspections          | 369               | 221                       | 231                 | 194                 |
| City of North<br>Las Vegas | Number of<br>Follow-Up<br>Actions | 10                | 10                        | 12                  | 7                   |
|                            | Number of<br>Inspections          | 211               | 331                       | 510                 | 510                 |
| Clark County               | Number of<br>Follow-Up<br>Actions | 313 <sup>a</sup>  | 463 <sup>a</sup>          | 544 <sup>a</sup>    | 544 <sup>a</sup>    |
| SWMP Target                | Conduct annual in                 | spectionsofindust | rial facilities identifie | d as belonging to ( | Category 1, 2, or 3 |

# Table 12-3: Summary of Industrial Facility Stormwater Inspections and Follow-Up Actions for the Current Permit Year (2023-2024) and the Prior Three Permit Years

Notes:

Number of inspections includes the total number of industrial site inspections based on permit requirements

<sup>a</sup> Follow-up actions include follow-up inspections, correction orders, violation notices, enforcement meetings, and penalties.

## 12.2.6 Industrial Facility Stormwater Inventory (SC-24)

The Permittees are required to provide an inventory of industrial facilities within their jurisdiction to the NDEP; the inventory is updated annually. The four categories of industrial facilities that require annual inspections, according to the permit, are discussed in more detail in the following subsections.

#### 12.2.6.1 SARA Title III Section 313

SARA Title III Section 313 requires certain classes of industrial facilities to submit reports to the EPA, based on their potential for toxic chemical releases. The EPA regulates and maintains a list of these industrial facilities, as well as other facilities that release certain amounts of regulated chemicals into the environment. The EPA's website (<u>https://www.epa.gov/enviro/tri-search</u>) was used to identify all Toxics Release Inventory (TRI) facilities in the Las Vegas Valley. However, some inaccuracies in the EPA GIS data may be present. Section 313 facilities within the Las Vegas Valley that require an industrial inspection are included in the Permittees' inventories and are also identified in Table 12-4.



#### Table 12-4: Industrial Facilities in the Las Vegas Valley Subject to SARA Title III Section 313. According to EPA TRI Search for the Current Permit Year (2023-2024)

| Industrial Facility Name                                                                                                                                                                                                                                                                                                                                         | Address                                                                                                        | Inspected Annually By   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|
| Accurate Metal Solutions, Las                                                                                                                                                                                                                                                                                                                                    | 2261 Buildoro Ave. Los Verses NV 00404                                                                         | NA <sup>d</sup>         |
| Vegas, LLC <sup>a</sup>                                                                                                                                                                                                                                                                                                                                          | 3261 Builders Ave., Las Vegas, NV 89101                                                                        | NA <sup>a</sup>         |
| Aggregate Industries SWR Gown<br>Asphalt                                                                                                                                                                                                                                                                                                                         | 413 E Gowan Rd., North Las Vegas, NV 89030                                                                     | City of North Las Vegas |
| Amazon.com Services LLC (LSA<br>Development)                                                                                                                                                                                                                                                                                                                     | 5801 Nicco Way, Las Vegas, NV 89115 <sup>e</sup>                                                               | City of North Las Vegas |
| Anderson Dairy                                                                                                                                                                                                                                                                                                                                                   | 801 Searles Ave., Las Vegas, NV 89101                                                                          | City of Las Vegas       |
| Calportland Company Gary Plant                                                                                                                                                                                                                                                                                                                                   | 6501 W Richmar Ave., Las Vegas, NV 89139                                                                       | Clark County            |
| Calportland Company Gowan<br>Plant                                                                                                                                                                                                                                                                                                                               | 143 W Gowan Rd., North Las Vegas, NV 89032                                                                     | City of North Las Vegas |
| Calportland Company<br>Henderson Plant (Silver State<br>Materials)                                                                                                                                                                                                                                                                                               | 450 Eastgate Rd., Henderson, NV 89014                                                                          | City of Henderson       |
| Calportland Company Range<br>Ready Mix Plant                                                                                                                                                                                                                                                                                                                     | 5910 Range Rd., North Las Vegas, NV 89115                                                                      | City of North Las Vegas |
| Calportland Company Sloan<br>Plant                                                                                                                                                                                                                                                                                                                               | 5300 Sloan Rd., Sloan, NV 89124                                                                                | Clark County            |
| Capital Cabinet Corp <sup>b</sup>                                                                                                                                                                                                                                                                                                                                | 3645 Losee Rd., North Las Vegas, NV 89030                                                                      | NA <sup>d</sup>         |
| Casino Ready Mix <sup>b</sup>                                                                                                                                                                                                                                                                                                                                    | 5355 N Beesley Dr., Las Vegas, NV 89115                                                                        | NA <sup>d</sup>         |
| Cemex - Block Plant                                                                                                                                                                                                                                                                                                                                              | 5030 N Lamb Blvd., Las Vegas, NV 89115 e                                                                       | City of North Las Vegas |
| Cemex – Sloan Plant                                                                                                                                                                                                                                                                                                                                              | 14998 S Las Vegas Blvd., Las Vegas, NV<br>89124                                                                | Clark County            |
| Cemex Anthem Plant #1856 b                                                                                                                                                                                                                                                                                                                                       | 2403 Democracy Way, Henderson, NV 89044                                                                        | NA <sup>d</sup>         |
| Cemex Blue Diamond Plant<br>1855 <sup>b</sup>                                                                                                                                                                                                                                                                                                                    | 9325 S Jones Blvd., Las Vegas, NV 89119                                                                        | NA <sup>d</sup>         |
| Cemex Gowan Plant #1860                                                                                                                                                                                                                                                                                                                                          | 29 W Gowan., North Las Vegas, NV 89030                                                                         | City of North Las Vegas |
| Cemex Kyle Canyon Plant #1866                                                                                                                                                                                                                                                                                                                                    | 10025 Moccasin Rd., Las Vegas, NV 89143                                                                        | City of Las Vegas       |
| Cemex MGM City Center <sup>b</sup>                                                                                                                                                                                                                                                                                                                               | 3790 S Las Vegas Blvd., Las Vegas, NV 89109                                                                    | NA <sup>d</sup>         |
| Cemex North Las Vegas Plant<br>#1853 – Losee Plant                                                                                                                                                                                                                                                                                                               | 4001 N Losee Rd., North Las Vegas, NV 89030                                                                    | City of North Las Vegas |
| Cemex Turnberry Plant #1859 b                                                                                                                                                                                                                                                                                                                                    | 2777 Paradise Rd., Las Vegas, NV 89109                                                                         | NA <sup>d</sup>         |
| Certain Teed Gypsum - Las<br>Vegas Finishing Plant                                                                                                                                                                                                                                                                                                               | 3838 Civic Center Dr., North Las Vegas, NV<br>89030                                                            | City of North Las Vegas |
| Certain Teed Gypsum - Las<br>Vegas Plant                                                                                                                                                                                                                                                                                                                         | 13500 Blue Diamond Rd Las Vegas, NV 89161                                                                      | Clark County            |
| CMC Economy Steel and CMC<br>Rebar Las Vegas                                                                                                                                                                                                                                                                                                                     | 4485 E Colton Ave., Las Vegas, NV 89115                                                                        | Clark County            |
| Custom Building Products                                                                                                                                                                                                                                                                                                                                         | 3115 E. Lone Mountain Rd., Suite 1000, North<br>Las Vegas, NV 89081                                            | City of North Las Vegas |
| Ergon Asphalt & Emulsions Inc<br>Las Vegas                                                                                                                                                                                                                                                                                                                       | 3901 W Ponderosa Way, Las Vegas, NV 89118                                                                      | Clark County            |
| Ergon Asphalt & Emulsions Inc<br>Las Vegas                                                                                                                                                                                                                                                                                                                       | 6400 W Richmar Ave., Las Vegas, NV 89139                                                                       | Clark County            |
| Farm Fresh Foods                                                                                                                                                                                                                                                                                                                                                 | 3840 Civic Center Dr., North Las Vegas, NV<br>89030                                                            | City of North Las Vegas |
| Firestone Building Products                                                                                                                                                                                                                                                                                                                                      | 4272 Corporate Center Dr., North Las Vegas,<br>NV 89030                                                        | City of North Las Vegas |
| Grand Products Nevada Inc.<br>(CES) <sup>b</sup>                                                                                                                                                                                                                                                                                                                 | 751 Pilot Rd. Suite A, Las Vegas, NV 891119                                                                    | Clark County            |
| HD Supply Construction Supply<br>LTD (Harris Real Estate Nevada<br>LLC)                                                                                                                                                                                                                                                                                          | 2437 1/2 Losee Rd., North Las Vegas, NV<br>89030                                                               | City of North Las Vegas |
| LLC)<br>Notes:<br><sup>a</sup> This business is not operational / does n<br><sup>b</sup> Facility not operational or no longer exis<br><sup>c</sup> Stormwater inspections not required, du<br><sup>d</sup> NA = Not Applicable; no inspection nece<br><sup>e</sup> The address and jurisdiction have been<br><sup>f</sup> Current address: 4800 E El Campo Gran | not have a business license in CLV<br>ts<br>le to facility process change<br>essary<br>verified to be accurate |                         |



# Table 12-4: Industrial Facilities in the Las Vegas Valley Subject to SARA Title III Section 313, According to EPA TRI Search for the Current Permit Year (2023-2024)

| Industrial Facility Name                                       | Address                                                            | Inspected Annually By                |
|----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|
| IGT <sup>b</sup>                                               | 6355 S Buffalo Dr., Las Vegas, NV 89113                            | Clark County d                       |
| Jensen Precast                                                 | 3853 Losee Rd., North Las Vegas, NV 89030                          | City of North Las Vegas              |
| Jensen Precast                                                 | 3840 N Bruce St., North Las Vegas, NV 89030                        | City of North Las Vegas              |
| Jensen Precast <sup>b</sup>                                    | 2750 Marion Dr., Las Vegas, NV 89115                               | NA <sup>d</sup>                      |
| Kalco Lighting LLC                                             | 6355 S Windy St. Suite 3, Las Vegas, NV                            | Clark County                         |
|                                                                | 89119<br>8925 Ken's Ct., Las Vegas, NV 89139                       | Clark County                         |
| Ken's Foods Inc. Las Vegas<br>Las Vegas Cultured Marble        | 6875 Speedway Blvd. Building U-102, Las                            |                                      |
| Inc. <sup>b</sup>                                              | Vegas, NV 89115                                                    | NA <sup>d</sup>                      |
| Las Vegas Paving Corp                                          | 10846 W. Lone Mountain Rd., Las Vegas, NV<br>89129                 | City of Las Vegas                    |
| Las Vegas Paving Corp <sup>b</sup>                             | 6600 Speedway Blvd., Las Vegas, NV 89115                           | City of North Las Vegas              |
| Las Vegas Paving Corp                                          | 3300 N 5th St., North Las Vegas, NV 89030                          | City of North Las Vegas              |
| Las Vegas Paving Corp                                          | 3400 N 5th St., North Las Vegas, NV 89030                          | City of North Las Vegas              |
| Las Vegas Paving Corp                                          | 521 Cape Horn Dr., Henderson, NV 89011                             | City of Henderson                    |
| Las Vegas Paving Corp                                          | 9325 S Jones Blvd., Las Vegas, NV 89139                            | Clark County                         |
| Las Vegas Paving Corp <sup>b</sup>                             | 0.75 Miles W of I-15 & 15 SW of US 95, Las<br>Vegas, NV 89115      | NA <sup>d</sup>                      |
| Las Vegas Paving Corp <sup>b</sup>                             | 1.5 Miles N of Hollywood & Las Vegas Blvd.,<br>Las Vegas, NV 89115 | NA <sup>d</sup>                      |
| Lighthouse VIP Products <sup>b</sup>                           | 4601 E Cheyenne Ave., Las Vegas, NV 89115                          | NA <sup>d</sup>                      |
| Mars Chocolate NA                                              | 1 Sunset Way, Henderson, NV 89014                                  | City of Henderson                    |
| May Manufacturing LLC (dba<br>Artesian Spas)                   | 4720 N Lamb Blvd., Las Vegas NV 89115                              | Clark County                         |
| MCC-Uniflex LLC <sup>b</sup>                                   | 1151 Grier Dr., Las Vegas, NV 89119                                | NA <sup>d</sup>                      |
| Meadow Gold Dairies                                            | 6350 E Centennial Pkwy., North Las Vegas, NV<br>89115              | City of North Las Vegas              |
| Nevada Ready Mix Arville                                       | 4301 W Hacienda Ave., Las Vegas, NV 89109                          | Clark County                         |
| Nevada Ready Mix <sup>b</sup>                                  | 2200 Bowes St., Henderson, NV 89044                                | NA <sup>d</sup>                      |
| Nevada Ready Mix Bonanza                                       | 601 W Bonanza Rd., Las Vegas, NV 89106                             |                                      |
| Nevada Ready Mix Echelon <sup>b</sup>                          | 2920 S Industrial Rd., Las Vegas, NV 89109                         | City of Las Vegas<br>NA <sup>d</sup> |
| Nevada Ready Mix Le Reve <sup>b</sup>                          | Sands & S Las Vegas Blvd., Las Vegas, NV<br>89109                  | NA <sup>d</sup>                      |
| Nevada Ready Mix Lone<br>Mountain                              | 10811 W Washburn Ave., Las Vegas, NV<br>89129                      | Clark County                         |
| Nevada Ready Mix Plant 9 <sup>b</sup>                          | 8755 W Sunset Rd., Las Vegas, NV 89123                             | NA <sup>d</sup>                      |
| Nitrex Inc.                                                    | 201 E Mayflower Ave., North Las Vegas, NV<br>89030                 | City of North Las Vegas              |
| Nucor Insulated Panel Group                                    | 4700 Engineers Way Suite 103, North Las<br>Vegas, NV 89081         | City of North Las Vegas              |
| Ocean Spray Cranberries Inc. <sup>c</sup>                      | 1301 American Pacific Dr., Henderson, NV<br>89014                  | NA <sup>d</sup>                      |
| Pacific Engineering & Production<br>Co. of Nevada <sup>b</sup> | 8291 Gibson Rd., Henderson, NV 89015                               | NA <sup>d</sup>                      |
| Pavestone – Las Vegas NV Plant                                 | 4720 Alto Ave. Las Vegas, NV 89115                                 | Clark County                         |
| Pioneer Americas LLC D/B/A<br>Olin Chlor Alkali Products       | 350 S Fourth St., Henderson, NV 89015                              | Clark County                         |
| PLI (CPI Card Group)                                           | 1220 Trade Drive, North Las Vegas, NV 89030                        | City of North Las Vegas              |
| Poly-West <sup>b</sup>                                         | 251 Conestoga Way, Henderson, NV 89002                             | NA d                                 |
| Pro Petroleum LLC.                                             | 4985 N Sloan Ln., Las Vegas, NV 89115                              | Clark County                         |

Notes: <sup>a</sup> This business is not operational / does not have a business license in CLV <sup>b</sup> Facility not operational or no longer exists <sup>c</sup> Stormwater inspections not required, due to facility process change <sup>d</sup> NA = Not Applicable; no inspection necessary <sup>e</sup> The address and jurisdiction have been verified to be accurate <sup>f</sup> Current address: 4800 E El Campo Grande Ave., North Las Vegas, NV 89115



#### Table 12-4: Industrial Facilities in the Las Vegas Valley Subject to SARA Title III Section 313. According to EPA TRI Search for the Current Permit Year (2023-2024)

| Industrial Facility Name                                          | Address                                                                        | Inspected Annually By   |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|
| Pro Terminal Operators LLC                                        | 4800 E El Campo Grande Ave., Las Vegas, NV<br>89115 <sup>f</sup>               | City of North Las Vegas |
| Quikrete                                                          | 112 W Brooks Ave North Las Vegas, NV 89030                                     | City of North Las Vegas |
| Rebel Oil Co Inc.                                                 | 5054 N Sloan Ln., Las Vegas, NV 89115                                          | Clark County            |
| Reladyne (New West Holdings<br>LLC)                               | 2420 Losee Rd., North Las Vegas, NV 89030                                      | City of North Las Vegas |
| Rinker Las Vegas Pipe                                             | 2100 Burns Rd. Henderson, NV 89011                                             | City of Henderson       |
| Rinker Materials Blue Diamond <sup>b</sup>                        | 9275 S Jones Blvd., Las Vegas, NV 89139                                        | NA <sup>d</sup>         |
| Rinker Materials Buffalo Main<br>1850 <sup>b</sup>                | 4511 S Buffalo Dr., Las Vegas, NV 89147                                        | NA <sup>d</sup>         |
| Rinker Materials Henderson<br>1854 <sup>b</sup>                   | 750 Capehorn Dr., Henderson, NV 89015                                          | NA <sup>d</sup>         |
| Safety-Kleen Systems North Las<br>Vegas (LVN)                     | 4582 Donovan Way, North Las Vegas, NV<br>89081                                 | City of North Las Vegas |
| Saguaro Power Company                                             | 435 S Fourth St., Henderson, NV 89015                                          | Clark County            |
| Service Rock Products<br>(Robertson's Ready Mix)                  | 8350 4th St Henderson, NV, 89015                                               | Clark County            |
| Service Rock Products Inc. Las<br>Vegas <sup>b</sup>              | 800 Feet S of Intersection of Cactus Rd. &<br>Polluck Dr., Las Vegas, NV 89102 | NA <sup>d</sup>         |
| Service Rock Products<br>(Robertson's Ready Mix)                  | 10811 W Washburn, Las Vegas, NV 89149                                          | Clark County            |
| Service Rock Products Inc -<br>Sloan (Robertson's Ready Mix)      | 14575 Arville St., Las Vegas, NV 89124                                         | Clark County            |
| Service Rock Products Inc –<br>Beesley (Robertson's Ready<br>Mix) | 5255 Beesley Dr., Las Vegas, NV 89115                                          | Clark County            |
| Sierra North Batch Plant                                          | 4150 Smiley Rd., North Las Vegas, NV 89081                                     | City of North Las Vegas |
| Sierra West Batch Plant                                           | 10021 Moccasin Rd., Las Vegas, NV 89143                                        | City of Las Vegas       |
| Southern Nevada Paving<br>Summerlin Asphalt Plant <sup>b</sup>    | Summerlin Pkwy. & I-215, Las Vegas, NV<br>89145                                | NA <sup>d</sup>         |
| Sparkletts Drinking Water Corp                                    | 4225 W Desert Inn Rd., Las Vegas, NV 89102                                     | Clark County            |
| Sparkletts Water System Aqua                                      | 3140 Polaris Ave. #10, Las Vegas, NV 89102                                     | NA <sup>d</sup>         |
| Spartan of Nevada, Inc. <sup>b</sup>                              | 2441 W Desert Inn Rd., Las Vegas, NV 89109                                     | NA <sup>d</sup>         |
| Thatcher Co of Nevada                                             | 90 Business Center St., Henderson, NV 89014                                    | City of Henderson       |
| Thermo Fluids Inc. Antifreeze<br>Services                         | 4000 Arcata Way, North Las Vegas, NV 89030                                     | City of North Las Vegas |
| Thomas Petroleum - Las Vegas<br>Bonanza <sup>b</sup>              | 715 W Bonanza Rd., Las Vegas NV 89106                                          | NA <sup>d</sup>         |
| Thomas Petroleum LLC Sloan <sup>b</sup>                           | 4825 N Sloan Ln., Las Vegas NV 89115                                           | Clark County            |
| Fitanium Metals Corp                                              | 181 N Water St., Henderson, NV 89015                                           | Clark County            |
| Transportation Systems Services<br>Operations Inc.                | 5406 E El Campo Grande Ave., North Las<br>Vegas, NV 89115                      | City of North Las Vegas |
| Tronox LLC (EMD Acquisitions<br>_LC)                              | 560 W Lake Mead Pkwy., Henderson NV,<br>89015                                  | Clark County            |
| Wells Enterprises Inc.                                            | 1001 Olsen St., Henderson, NV 89015                                            | City of Henderson       |
| Universal Urethane Inc.                                           | 4201 E Lone Mountain Rd., North Las Vegas,<br>NV 89081                         | City of North Las Vegas |
| Washington Group<br>International <sup>b</sup>                    | 4610 N Grand Canyon Dr., Las Vegas, NV<br>89129                                | NA <sup>d</sup>         |
| West District Oil #75 LAS                                         | 4581 Eaker St., North Las Vegas, NV 89081                                      | City of North Las Vegas |

Notes: <sup>a</sup> This business is not operational / does not have a business license in CLV <sup>b</sup> Facility not operational or no longer exists <sup>c</sup> Stormwater inspections not required, due to facility process change

<sup>d</sup> NA = Not Applicable; no inspection necessary

<sup>e</sup> The address and jurisdiction have been verified to be accurate <sup>f</sup> Current address: 4800 E El Campo Grande Ave., North Las Vegas, NV 89115



# Table 12-4: Industrial Facilities in the Las Vegas Valley Subject to SARA Title III Section 313, According to EPA TRI Search for the Current Permit Year (2023-2024)

| Industrial Facility Name                                | Address                                          | Inspected Annually By               |  |
|---------------------------------------------------------|--------------------------------------------------|-------------------------------------|--|
| Westlake Royal Roofing<br>(formerly Boral Roofing, LLC) | 430 Eastgate Rd., Henderson, NV 89011            | City of Henderson                   |  |
| Young Electric Sign Co.                                 | 5119 S Cameron St., Las Vegas, NV 89118          | Clark County                        |  |
| SWMP Target                                             | Provide an annual update to the inventory of inc | lustrial facilities to be inspected |  |

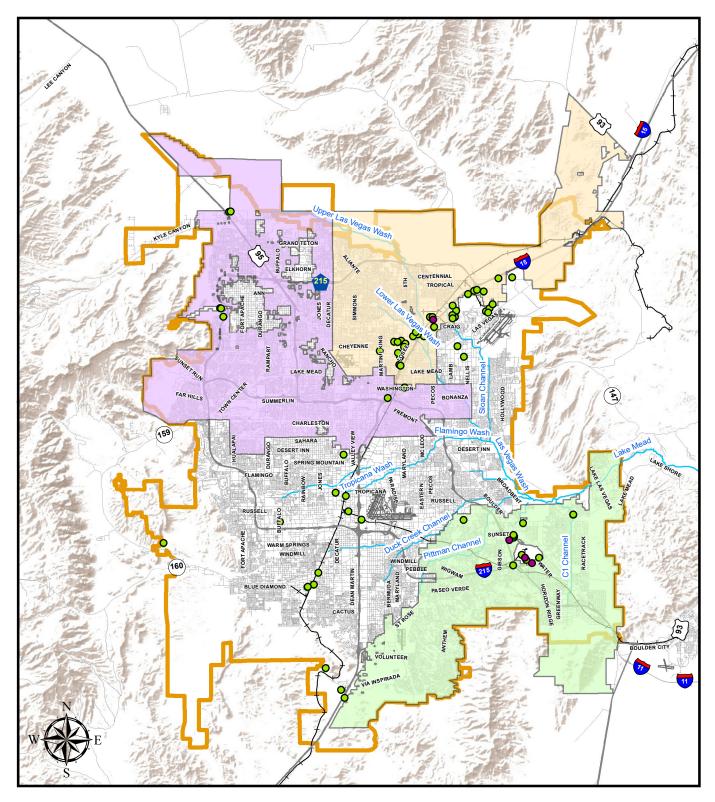
Notes: <sup>a</sup> This business is not operational / does not have a business license in CLV

<sup>b</sup> Facility not operational or no longer exists

<sup>c</sup> Stormwater inspections not required, due to facility process change

<sup>d</sup> NA = Not Applicable; no inspection necessary

<sup>e</sup> The address and jurisdiction have been verified to be accurate


<sup>f</sup> Current address: 4800 E El Campo Grande Ave., North Las Vegas, NV 89115

The following facility was added to the industrial facilities per the SIC codes:

• Pavestone – Las Vegas NV Plant

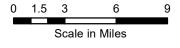
### 12.2.7 Industrial Facility Stormwater Inspection Boundary

The boundary for the Industrial Facility Inspections for the 2023-2024 Annual Report is based on the 2018 Ultimate Development Boundary (UDB) Updated for the Las Vegas Valley MS4 Program. While no changes to the boundary are currently anticipated, the program will be modified, if necessary, in response to any updates to the UDB.



#### Legend

Ultimate Development Boundary Updated for the Las Vegas Valley MS4 Program (2018 MPU)


- Hazardous Waste Treatment Disposal and Recovery Facilities
- Industrial Facility Subject to Section 313
- —— Airports
- ----- Streets
- -+--+ Railroads

#### Jurisdictional Boundaries

City of Henderson

Г

- City of Las Vegas
- City of North Las Vegas
- Clark County



Service Layer Credits: Sources: Esri, USGS, NOAA

Figure 12-1 Industrial Facility Locations 2023-2024 Annual Report



## 12.2.8 Municipal Landfills

The Apex Regional Landfill is currently the only active local landfill in the Las Vegas area, however it is located outside of the Las Vegas Wash watershed. As there are no active municipal landfills in the Las Vegas Wash drainage area, the Permittees did not identify any municipal landfills for inclusion on their industrial facility inspection inventories.

## 12.2.9 Hazardous Waste Treatment, Disposal, and Recovery Facilities

The EPA keeps a list of hazardous waste treatment, disposal, and recovery facilities that are subject to the control of hazardous waste under the Resource Conservation and Recovery Act (RCRA). The EPA RCRA Info website (<u>https://enviro.epa.gov/facts/rcrainfo/search.html</u>) was searched to find hazardous waste treatment, disposal, and recovery facilities within the Las Vegas Valley. The facilities subject to RCRA within the Las Vegas Valley that require an industrial inspection are included in the Permittees' inventories and are also identified in Table 12-5.

# Table 12-5: Hazardous Waste Treatment, Disposal, and Recovery Facilities in the Las Vegas Valley, According to EPA RCRA Info for the Current Permit Year (2023-2024)

| Industrial Facility Name                                 | Address                                                                            | Inspected Annually By   |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|--|
| Basic Remediation Company<br>(BRC)                       | 875 W Warm Springs Rd.,<br>Henderson, NV 89011                                     | Clark County            |  |
| Safety Kleen Systems, Inc                                | 4582 Donovan Way, North Las<br>Vegas, NV 89081                                     | City of North Las Vegas |  |
| Pioneer Americas LLC D/B/A Olin<br>Chlor Alkali Products | 350 S Fourth St., Henderson, NV<br>89015                                           | Clark County            |  |
| Tronox LLC (EMD Acquisitions<br>LLC)                     | 560 W Lake Mead Pkwy.,<br>Henderson, NV 89105                                      | Clark County            |  |
| SWMP Target                                              | Provide an annual update to the inventory of industrial facilities to be inspected |                         |  |

# 12.2.10 Other Facilities that Contribute a Substantial Pollutant Load to the MS4

The Permittees have not identified any other facilities contributing a substantial pollutant load to the MS4. However, many industrial facilities, in addition to those listed in Table 12-5, are being inspected each year in the Las Vegas Valley by the Permittees, and under other programs.

## 12.2.11 Industrial Facility Inventory

Table 12-6 lists the inventory of facilities and the frequency of inspection that will be inspected during the 2024-2025 MS4 permit year. This list is reviewed every year and submitted to NDEP as part of the Annual Report.



| Table 12-6: Inventory of Facilities and |                                                        | Inspection Frequency for 20 |                  | 24-2025 Fen                                         |              |                                    |
|-----------------------------------------|--------------------------------------------------------|-----------------------------|------------------|-----------------------------------------------------|--------------|------------------------------------|
| Type of<br>Industrial<br>Facility       | Facility Name                                          | SIC<br>Code(s)              | NAICS<br>Code(s) | Address                                             | Jurisdiction | Minimum<br>Inspection<br>Frequency |
|                                         | Calportland<br>Company Gary<br>Plant                   | 3273                        | 327320           | 6501 W Richmar Ave.,<br>Las Vegas, NV 89139         |              |                                    |
|                                         | Calportland<br>Company Sloan<br>Plant                  | 3273                        | 327320           | 5300 Sloan Rd.,<br>Las Vegas, NV 89054              |              |                                    |
|                                         | Cemex Sloan Plant                                      | 3273                        | 327320           | 14998 S Las Vegas<br>Blvd., Las Vegas, NV<br>89124  |              |                                    |
|                                         | Certain Teed<br>Gypsum - Las<br>Vegas Plant            | NA                          | 212399           | 13500 Blue Diamond<br>Rd Las Vegas, NV<br>89161     |              |                                    |
|                                         | CMC Economy<br>Steel and CMC<br>Rebar Las Vegas        | 3441                        | 332312           | 4485 E Colton Ave.,<br>Las Vegas, NV 89115          |              |                                    |
|                                         | Creative Electronics<br>and Software, Inc.             | 3672                        | 334412           | 751 E Pilot Rd, Las<br>Vegas, NV 89119              |              |                                    |
|                                         | Ergon Asphalt &<br>Emulsions Inc Las<br>Vegas          | 2951                        | 324121           | 3901 W Ponderosa<br>Way, Las Vegas, NV<br>89118     |              | Once<br>Annually                   |
|                                         | Ergon Asphalt &<br>Emulsions Inc Las<br>Vegas          | 2951                        | 324121           | 6400 W Richmar Ave.,<br>Las Vegas, NV 89139         | Clark County |                                    |
|                                         | IGT                                                    | 3999                        | 339999           | 6355 S Buffalo Dr.,<br>Las Vegas, NV 89113          |              |                                    |
|                                         | Kalco Lighting LLC                                     | 3999                        | 335122           | 6355 S Windy St.<br>Suite 3, Las Vegas,<br>NV 89119 |              |                                    |
| Section 313 of<br>SARA                  | Ken's Foods Inc.<br>Las Vegas                          | 2099                        | 311941           | 8925 Ken's Ct., Las<br>Vegas, NV 89139              |              |                                    |
|                                         | Las Vegas Paving<br>Corp                               | 1081                        | 324121           | 9325 S Jones Blvd.,<br>Las Vegas, NV 89139          |              |                                    |
|                                         | May Manufacturing<br>LLC (dba Artesian<br>Spas)        | 3088                        | 326191           | 4720 N Lamb Blvd.,<br>Las Vegas NV 89115            |              |                                    |
|                                         | Nevada Ready Mix<br>Arville                            | 3273                        | 327320           | 4301 W Hacienda<br>Ave., Las Vegas, NV<br>89109     |              |                                    |
|                                         | Nevada Ready Mix<br>Lone Mountain                      | 3273                        | 327320           | 10811 W Washburn<br>Ave., Las Vegas, NV<br>89129    |              |                                    |
|                                         | Pavestone – Las<br>Vegas NV Plant                      | 3273                        | 327331           | 4720 Alto Ave. Las<br>Vegas, NV 89115               |              |                                    |
|                                         | Pro Petroleum Inc.                                     | 5171                        | 424710           | 4985 N Sloan Ln.,<br>Las Vegas, NV 89115            |              |                                    |
|                                         | Rebel Oil Co Inc.                                      | 5171                        | 424710           | 5054 N Sloan Ln.,<br>Las Vegas, NV 89115            |              |                                    |
|                                         | Saguaro Power<br>Company                               | 4939                        | 221112           | 435 Fourth St.,<br>Henderson, NV 89015              |              |                                    |
|                                         | Service Rock<br>Products<br>(Robertson's Ready<br>Mix) | 3273                        | 327320           | 8350 4th St<br>Henderson, NV,<br>89015              | 1            |                                    |
|                                         | Service Rock<br>Products<br>(Robertson's Ready<br>Mix) | 3273                        | 327320           | 10815 W Washburn<br>Rd., Las Vegas, NV<br>89149     |              |                                    |

|                                   | nventory of Facil                                                       | ities and              | Inspectio                    | n Frequency for 20                                    | 24-2025 Perr               | nit Year                           |
|-----------------------------------|-------------------------------------------------------------------------|------------------------|------------------------------|-------------------------------------------------------|----------------------------|------------------------------------|
| Type of<br>Industrial<br>Facility | Facility Name                                                           | SIC<br>Code(s)         | NAICS<br>Code(s)             | Address                                               | Jurisdiction               | Minimum<br>Inspection<br>Frequency |
|                                   | Service Rock<br>Products Inc –<br>Sloan (Robertson's<br>Ready Mix)      | 3273                   | 327320                       | 14575 Arville St., Las<br>Vegas, NV 89124             |                            |                                    |
| Section 313 of                    | Service Rock<br>Products Inc –<br>Beesley<br>(Robertson's Ready<br>Mix) | 3273                   | 327320                       | 5255 Beesley Dr., Las<br>Vegas, NV 89115              | - Clark County             | Once                               |
| SARA                              | Sparkletts Drinking<br>Water Corp                                       | 5149                   | 312112                       | 4225 W Desert Inn<br>Rd., Las Vegas, NV<br>89102      | Clark County               | Annually                           |
|                                   | Thomas Petroleum<br>LLC Sloan                                           | 5171                   | 424710                       | 5000 N Sloan Ln.,<br>Las Vegas NV 89115               |                            |                                    |
|                                   | Titanium Metals<br>Corp                                                 | 3339                   | 331419                       | 181 N Water St.,<br>Henderson, NV 89015               |                            |                                    |
|                                   | Young Electric Sign<br>Co.                                              | 3993                   | 811121                       | 5119 S Cameron St.,<br>Las Vegas, NV 89118            |                            |                                    |
|                                   | Anderson Dairy                                                          | 2023,<br>2024,<br>2026 | 311511,<br>311514,<br>311520 | 801 Searles Ave.,<br>Las Vegas, NV 89101              |                            |                                    |
|                                   | Apex Materials LLC                                                      | 1442                   | 212321                       | 10551 Skye Village<br>Rd., Las Vegas, NV<br>89136     | City of Las<br>Vegas       | Once<br>Annually                   |
|                                   | Arteaga Concrete<br>Inc.                                                | 3273                   | 327320                       | 2550 Highland Dr.,<br>Las Vegas, NV 89109             |                            |                                    |
|                                   | Capriati<br>Construction Corp.                                          | 1429                   | 212319                       | 10051 Moccasin Rd.,<br>Las Vegas, NV 89143            |                            |                                    |
| Section 313 of                    | Cemex Kyle<br>Canyon Plant<br>#1866                                     | 3273                   | 327320                       | 10025 Moccasin Rd.,<br>Las Vegas, NV 89143            |                            |                                    |
| SARA                              | Las Vegas Paving<br>Corp.                                               | 3273                   | 324121                       | 10846 W. Lone<br>Mountain Rd., Las<br>Vegas, NV 89129 |                            |                                    |
|                                   | Mel Clark Inc. Lone<br>Mountain Pit                                     | 1429                   | 212319                       | 10550 W Lone Mtn<br>Rd., Las Vegas, NV<br>89129       |                            |                                    |
|                                   | Nevada Ready Mix<br>Bonanza                                             | 3273                   | 327320                       | 601 W Bonanza Rd.,<br>Las Vegas, NV 89106             |                            |                                    |
|                                   | Sierra West Batch<br>Plant                                              | 3273                   | 327320                       | 10021 Moccasin Rd.,<br>Las Vegas, NV 89143            |                            |                                    |
|                                   | Wells Cargo Inc.<br>Lone Mountain Pit                                   | 1429                   | 212319                       | 10191 Park Run Dr.,<br>Las Vegas, NV 89145            |                            |                                    |
|                                   | Aggregate<br>Industries SWR<br>Gown Asphalt                             | 2951                   | 23411,<br>23571,<br>324121   | 413 E Gowan Rd.,<br>North Las Vegas, NV<br>89030      |                            |                                    |
| Section 313 of<br>SARA            | Amazon.com<br>Services LLC (LSA<br>Development)                         | 5961                   | 454110                       | 5801 Nicco Way., Las<br>Vegas, NV 89115               | City of North<br>Las Vegas | Once<br>Annually                   |
|                                   | American Eagle                                                          | NA                     | NA                           | 120 W Delhi Ave.,<br>North Las Vegas, NV<br>89030     |                            |                                    |



|                                   |                                                                            | Inspection Frequency for 2024-20 |                              | 24-2025 Fen                                                              |                            |                                    |
|-----------------------------------|----------------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------------------------------------------------------|----------------------------|------------------------------------|
| Type of<br>Industrial<br>Facility | Facility Name                                                              | SIC<br>Code(s)                   | NAICS<br>Code(s)             | Address                                                                  | Jurisdiction               | Minimum<br>Inspection<br>Frequency |
|                                   | Calportland<br>Company Gowan<br>Plant                                      | NA                               | 327320                       | 143 W Gowan Rd.,<br>North Las Vegas, NV<br>89032                         |                            |                                    |
|                                   | Calportland<br>Company Range<br>Ready Mix Plant                            | NA                               | 327320                       | 5910 Range Rd.,<br>North Las Vegas, NV<br>89115                          |                            |                                    |
|                                   | Cemex - Block<br>Plant                                                     | 3251,<br>3273                    | 327320,<br>327331            | 5030 N Lamb Blvd.,<br>Las Vegas, NV 89115                                |                            |                                    |
|                                   | Cemex Gowan<br>Plant #1860                                                 | 3273                             | 327320                       | 29 W Gowan., North<br>Las Vegas, NV 89030                                |                            |                                    |
|                                   | Cemex North Las<br>Vegas Plant #1853<br>- Losee Plant                      | 3273                             | 327320                       | 4001 N Losee Rd.,<br>North Las Vegas, NV<br>89030                        |                            |                                    |
|                                   | Certain Teed<br>Gypsum - Las<br>Vegas Finishing<br>Plant                   | 3275                             | 327420                       | 3838 Civic Center Dr.,<br>North Las Vegas, NV<br>89030                   |                            |                                    |
|                                   | Core & Main                                                                | NA                               | NA                           | 2829 Losee Rd.,<br>North Las Vegas, NV<br>89030                          | City of North<br>Las Vegas | Once<br>Annually                   |
|                                   | Custom Building<br>Products                                                | 3272                             | 327999,<br>327390            | 3115 E. Lone<br>Mountain Rd. Suite<br>1000, North Las<br>Vegas, NV 89081 |                            |                                    |
| Section 313 of<br>SARA            | Farm Fresh Foods                                                           | 5147                             | 311991                       | 3840 Civic Center Dr.,<br>North Las Vegas, NV<br>89030                   |                            |                                    |
| O/ WOY                            | Firestone Building<br>Products                                             | 3081                             | 326113                       | 4272 Corporate<br>Center Dr., North Las<br>Vegas, NV 89030               |                            |                                    |
|                                   | Jensen Precast                                                             | 3272                             | 327390,<br>327331            | 3853 Losee Rd.,<br>North Las Vegas, NV<br>89030                          |                            |                                    |
|                                   | Jensen Precast                                                             | 3272                             | 327390,<br>327331            | 3840 N Bruce St.,<br>North Las Vegas, NV<br>89030                        |                            |                                    |
|                                   | HD Supply<br>Construction Supply<br>LTD (Harris Real<br>Estate Nevada LLC) | 1791                             | 2381201                      | 2437 1/2 Losee Rd.,<br>North Las Vegas, NV<br>89030                      |                            |                                    |
|                                   | Las Vegas Paving<br>Corp                                                   | 2951                             | 324121                       | 6600 Speedway Blvd.,<br>Las Vegas, NV 89115                              |                            |                                    |
|                                   | Las Vegas Paving<br>Corp                                                   | NA                               | 324121                       | 3400 N 5th St.,<br>North Las Vegas, NV<br>89030                          | -                          |                                    |
|                                   | Meadow Gold<br>Dairies                                                     | 2026                             | 311511,<br>311514,<br>424430 | 6350 E Centennial<br>Pkwy., North Las<br>Vegas, NV 89115                 |                            |                                    |
|                                   | Nitrex Inc.                                                                | 3398                             | 332811                       | 201 E Mayflower Ave.,<br>North Las Vegas, NV<br>89030                    |                            |                                    |
|                                   | Nucor Insulated<br>Panel Group                                             | 3448                             | 332311                       | 4700 Engineers Way<br>Suite 103, North Las<br>Vegas, NV 89081            |                            |                                    |



| Type of<br>Industrial<br>Facility    | Facility Name                                                            | SIC<br>Code(s)         | NAICS<br>Code(s)                      | Address                                                      | Jurisdiction               | Minimum<br>Inspection<br>Frequency |
|--------------------------------------|--------------------------------------------------------------------------|------------------------|---------------------------------------|--------------------------------------------------------------|----------------------------|------------------------------------|
|                                      | PLI (CPI Card<br>Group)                                                  | NA                     | 326199,<br>323111,                    | 1220 Trade Drive,<br>North Las Vegas, NV<br>89030            |                            |                                    |
|                                      | Pro Terminal<br>Operators LLC                                            | 5171                   | 424710                                | 4800 E El Campo<br>Grande Ave., North<br>Las Vegas, NV 89115 |                            |                                    |
|                                      | Quikrete                                                                 | 3273                   | 327320                                | 112 W Brooks Ave<br>North Las Vegas, NV<br>89030             |                            |                                    |
|                                      | Reladyne (New<br>West Holdings LLC)                                      | 5171                   | 424710                                | 2420 Losee Rd.,<br>North Las Vegas, NV<br>89030              |                            |                                    |
| Section 313 of<br>SARA               | Sierra North Batch<br>Plant                                              | NA                     | 327320                                | 4150 Smiley Rd.,<br>North Las Vegas, NV<br>89081             | City of North<br>Las Vegas | Once<br>Annually                   |
|                                      | Thermo Fluids Inc.<br>Antifreeze Services                                | 2899,<br>5093          | 325998,<br>423930                     | 4000 Arcata Way,<br>North Las Vegas, NV<br>89030             |                            |                                    |
|                                      | Transportation<br>Systems Services<br>Operations Inc.                    | 3743                   | 336510,<br>33651                      | 5406 E El Campo<br>Grande Ave., North<br>Las Vegas, NV 89115 |                            |                                    |
|                                      | Universal Urethane<br>Inc.                                               | 3069,<br>3086,<br>3714 | 326150,<br>32615                      | 4201 E Lone<br>Mountain Rd., North<br>Las Vegas, NV 89081    |                            |                                    |
|                                      | West District Oil<br>#75 LAS                                             | NA                     | 424710                                | 4581 Eaker St., North<br>Las Vegas, NV 89081                 |                            |                                    |
|                                      | Calportland<br>Company<br>Henderson Plant<br>(Silver State<br>Materials) | 3273                   | 327320                                | 450 Eastgate Rd.,<br>Henderson, NV 89014                     | City of                    | Once<br>Annually                   |
|                                      | Las Vegas Paving<br>Corp                                                 | 2951                   | 324121                                | 521 Cape Horn Dr.,<br>Henderson, NV 89011                    |                            |                                    |
|                                      | Mars Chocolate NA                                                        | 2066                   | 311352,<br>445292                     | 1 Sunset Way,<br>Henderson, NV 89014                         |                            |                                    |
| Section 313 of                       | Rinker Las Vegas<br>Pipe                                                 | 3273                   | 327320                                | 1899 Burns Rd.<br>Henderson, NV 89011                        | Henderson                  |                                    |
| SARA                                 | Thatcher Co of<br>Nevada                                                 | 0111,<br>9999          | 3251,<br>32512,<br>325180,<br>325188  | 90 Business Center<br>St., Henderson, NV<br>89014            |                            |                                    |
|                                      | Wells Enterprises                                                        | 2024                   | 311520                                | 1001 Olsen St.,<br>Henderson, NV 89015                       |                            |                                    |
|                                      | Westlake Royal<br>Roofing (formerly<br>Boral Roofing, LLC)               | 3251                   | 327390                                | 430 Eastgate Rd.,<br>Henderson, NV 89011                     |                            |                                    |
| Hazardous                            | Tronox LLC (EMD<br>Acquisitions LLC)                                     | 2819,<br>1799          | 32518,<br>325180,<br>325188           | 560 W Lake Mead<br>Pkwy., Henderson<br>NV, 89015             |                            |                                    |
| Waste<br>Treatment,<br>Disposal, and | Basic Remediation<br>Company (BRC)                                       | 2819                   | 325188                                | 875 W Warm Springs<br>Rd., Henderson, NV<br>89011            | Clark County               | Once<br>Annually                   |
| Recovery                             | Pioneer Americas<br>LLC D/B/A Olin<br>Chlor Alkali<br>Products           | 2812                   | 325181,<br>325188,<br>32532,<br>32512 | 350 S Fourth St.,<br>Henderson, NV 89015                     |                            |                                    |



| Table 12-6: Inventory of Facilities and inspection Frequency for 2024-2025 Permit fear |                              |                |                                                    |                                                   |                            |                                    |
|----------------------------------------------------------------------------------------|------------------------------|----------------|----------------------------------------------------|---------------------------------------------------|----------------------------|------------------------------------|
| Type of<br>Industrial<br>Facility                                                      | Facility Name                | SIC<br>Code(s) | NAICS<br>Code(s)                                   | Address                                           | Jurisdiction               | Minimum<br>Inspection<br>Frequency |
| Hazardous<br>Waste<br>Treatment,<br>Disposal, and<br>Recovery                          | Safety-Kleen<br>Systems Inc. | 7389,<br>4953  | 325998,<br>484220,<br>484230,<br>562112,<br>532490 | 4582 Donovan Way,<br>North Las Vegas, NV<br>89031 | City of North<br>Las Vegas | Once<br>Annually                   |
| Landfills                                                                              |                              |                | None in t                                          | he Las Vegas Valley                               |                            |                                    |
| Other Facilities<br>Contributing a<br>Substantial<br>Pollutant Load                    |                              |                | None in t                                          | he Las Vegas Valley                               |                            |                                    |

The following facility was added to the industrial facilities inventory per the SIC codes and the inspections will initiate in the 2024-2025 permit year:

• Pavestone – Las Vegas NV Plant

## 12.2.12 Industrial Facility Stormwater Inspection Checklist (SC-25)

The Permittees have a standard checklist that is used by inspectors to conduct industrial facility inspections. The Industrial Facility Stormwater Inspection Checklist was approved by NDEP in 2016. Each Permittee modified the standard checklist slightly to meet its needs. However, the general information collected during inspections by each Permittee was similar, according to permit requirements.

## 12.2.13 Industrial Facility Inspector Training Workshops (SC-28)

The Permittees train new inspectors and refresh the training of existing inspectors utilizing a presentation that includes a description of the Las Vegas Valley NPDES MS4 Permit and the Las Vegas Valley SWMP, a description of the local ordinances, and the Industrial Facility Monitoring and Control Program. The industrial facility inspector training was accepted by NDEP in 2015. Table 12-7 provides a summary of the number of industrial facility inspectors for each Permittee during the current permit year and the prior three permit years.

| Inspection Type         | 2023-2024       | 2022-2023      | 2021-2022      | 2020-2021       |  |  |  |  |
|-------------------------|-----------------|----------------|----------------|-----------------|--|--|--|--|
| City of Henderson       | 9 <sup>a</sup>  | 5              | 4 <sup>d</sup> | 9               |  |  |  |  |
| City of Las Vegas       | 5               | 4              | 4              | 2               |  |  |  |  |
| City of North Las Vegas | 3               | 3              | 3              | 3               |  |  |  |  |
| Clark County            | 13 <sup>b</sup> | 1 <sup>c</sup> | 8 <sup>c</sup> | 15 <sup>c</sup> |  |  |  |  |

Table 12-7: Number of Industrial Facility Inspectors for the Current Permit Year (2023-2024) and the Prior Three Permit Years

Note:


<sup>a</sup> Inspectors also have inspections duties beyond stormwater

<sup>b</sup> 2 full time inspectors and 11 part-time inspectors

<sup>c</sup> Also employ 16 part-time stormwater inspectors

<sup>d</sup>11 Inspectors; however, only 5 generally conduct the stormwater industrial inspections

Industrial facility inspector training workshops are performed on an as-needed basis by each of the Permittees. If changes to the program and associated procedures have not occurred and no new inspectors have been on boarded, then a formal workshop may not be conducted. However, the Permittees provide internal stormwater training to multiple staff departments, which may include industrial facility inspectors as well.



# Section 13

**Construction Site Program** 



# 13 Construction Site Program

Section B.5.9 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley includes requirements for a Construction Site Program to reduce pollutants in stormwater runoff from construction sites to the MS4. In addition, Section B.5.10 includes requirements for inspection of construction sites to verify compliance with local ordinances and permits, as well as requirements to identify the implementation and enforcement actions necessary to assure compliance.

# 13.1 Overview of Best Management Practices

Table 5-1 in Section 5 (Stormwater Management Approach) of this Annual Report identifies the BMPs employed by the Las Vegas Valley in the 2023-2024 MS4 permit year to meet permit requirements. Specifically, the Construction Site Program employed the following Source Control (SC) BMPs, discussed in the following subsections:

- SC-20 Construction Site BMP Guidance Manual
- SC-21 Construction Site Inspections
- SC-22 Construction Site Training Workshops

# 13.2 Description of Individual Best Management Practices

### 13.2.1 Construction Site BMP Manual (SC-20)

In 2009, the Permittees produced the Las Vegas Valley Construction Site Best Management Practices Guidance Manual that describes the construction site runoff management program and provides non-structural and structural BMP implementation guidance for contractors, engineers, and other construction professionals. The manual provides guidance on selecting and designing construction site BMPs that are suitable to the unique environment and conditions in the Las Vegas Valley. Table 11-3 of the SWMP provides a list of the various BMPs that are described in the Las Vegas Valley Construction Site BMP Guidance Manual. Both documents are available on the CCRFCD website and on the <u>www.LVstormwater.com</u> website. During the permit year the manual was reviewed. Revisions to the manual are expected after development of the updated SMWP.

The Las Vegas Valley MS4 Construction Site Program complements, but is independent of, the NDEP's State construction site permitting program. The Las Vegas Valley Construction Site BMP Guidance Manual includes information for developers, engineers, and operators about the requirements for complying with both the local and State construction site stormwater programs; procedures for State compliance are also summarized in Table 13-1.

# Table 13-1: Summary of Procedures for Notifying Developers, Engineers, and Operators about NDEP Construction Site Program Requirements

| Procedure                                                                                                                                                                                                                                                         | City of<br>Henderson | City of<br>Las Vegas | City of<br>North<br>Las Vegas                | Clark<br>County |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------------------------------|-----------------|
| Grading improvement plan submittals require the<br>completed Las Vegas Valley Stormwater Quality<br>Management Program Construction Permit Submittal<br>Checklist, and a copy of the Notice of Intent (NOI) or a<br>copy of the letter of authorization from NDEP | х                    | х                    | Х                                            | x               |
| Standard comment on Grading Permit review letter<br>notifying developer of need for NDEP construction<br>permit                                                                                                                                                   | х                    | х                    | х                                            | х               |
| Standard general condition for construction plans or<br>specifications on Public Works projects assigning the<br>owner or contractor the responsibility for obtaining the<br>NDEP construction permit                                                             | х                    | х                    | х                                            | х               |
| SWMP Target                                                                                                                                                                                                                                                       |                      |                      | uirements to cor<br>n site stormwate<br>rams |                 |

Note: An "X" indicated that the Permittee utilizes this procedure

## 13.2.2 Construction Site Inspections (SC-21)

Supported by the Permittees' local ordinance language, construction sites in the Las Vegas Valley are inspected not only for active discharges to the MS4, but also for the potential to discharge (e.g., absence of or poorly installed and maintained BMPs), effective waste management onsite, and effective erosion and sediment control practices. Every effort is made to resolve minor infractions through close coordination between the inspector and the site operator. The goal of the construction site inspection program is education and compliance, rather than punishment. Inspectors have the authority to review the Stormwater Pollution Prevention Plans (SWPPP) required by NDEP's Stormwater General Permit if site conditions warrant. However, this is not a required aspect of every inspection.

The frequency of a site inspection is determined by the site's characteristics. All construction sites disturbing 100 acres or more, any site determined by the Permittees as "a significant threat to water quality," and all sites disturbing more than 1 acre that are tributary to an impaired waterbody (for sediment or turbidity), were inspected at least monthly.

During the permit year, the Permittees identified the following number of construction sites requiring inspections at least monthly:

- City of Henderson
  - 1 site disturbing >100 acres; 3 sites determined to be a "significant threat"; 0 sites disturbing more than 1 acre that are tributary to an impaired waterbody listed for sediment or turbidity
- City of Las Vegas
  - 2 sites disturbing >100 acres; 1 site determined to be a "significant threat"; 1 site disturbing more than 1 acre that are tributary to an impaired waterbody listed for sediment or turbidity



- City of North Las Vegas
  - 0 sites disturbing >100 acres; 0 sites determined to be a "significant threat"; 0 sites disturbing more than 1 acre that are tributary to an impaired waterbody listed for sediment or turbidity
- Clark County
  - 2 sites disturbing >100 acres; 38 sites determined to be a "significant threat"; 33 sites disturbing more than 1 acre that are tributary to an impaired waterbody listed for sediment or turbidity

Further, all construction sites greater than 1 acre that were not identified as a "significant threat to water quality" were inspected at least twice during ground disturbing activities.

The Permittees' construction site inspections consist of the following activities:

- Assess compliance with Permittee stormwater ordinances
- Verify proper implementation and maintenance of BMPs
- Assess potential BMP effectiveness
- Conduct visual observations for non-stormwater discharges, potential illicit connections, and the potential to discharge pollutants to the MS4
- Provide education and outreach materials to site personnel on stormwater pollution prevention, the NPDES MS4 Permit, and NDEP construction permit processes, as needed
- Prepare a written or electronic inspection record

The Permittees used existing inspection staff or a third party contractor to perform construction site inspections. A standard Construction Site Inspection Checklist was approved by NDEP in 2016 and is in use by the Permittees. Each Permittee customized the standard checklist slightly to meet its needs. However, the general information collected during inspections by each Permittee remained similar, according to permit requirements. Table 13-2 summarizes the construction site inspection activities for the current permit year and the prior three permit years.

# Table 13-2: Construction Site Inspection Activities for the Current Permit Year (2023-2024) and the Prior Three Permit Years

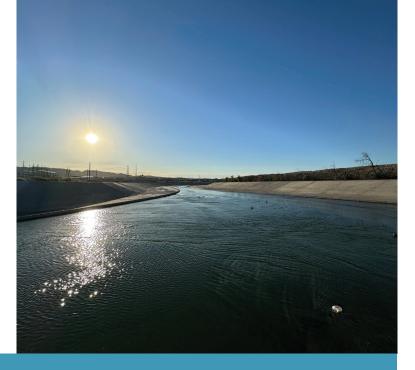
| Permittee         | Metric                                                  | 2023-2024                                                           | 2022-2023          | 2021-2022          | 2020-2021          |  |  |
|-------------------|---------------------------------------------------------|---------------------------------------------------------------------|--------------------|--------------------|--------------------|--|--|
| City of Henderson | Number of Construction<br>Site Inspections<br>Conducted | 1,514                                                               | 1,535              | 1,498              | 1,628              |  |  |
| ,                 | Number of Follow-Up<br>Actions                          | 241                                                                 | 242                | 230                | 269                |  |  |
| City of Las Vegas | Number of Construction<br>Site Inspections<br>Conducted | 1,395                                                               | 1,392              | 1,233              | 738                |  |  |
|                   | Number of Follow-Up<br>Actions                          | 103                                                                 | 189                | 285                | 246                |  |  |
| City of North     | Number of Construction<br>Site Inspections<br>Conducted | 278                                                                 | 237                | 241                | 153                |  |  |
| Las Vegas         | Number of Follow-Up<br>Actions                          | 131                                                                 | 63                 | 10                 | 19                 |  |  |
| Clark County      | Number of Construction<br>Site Inspections<br>Conducted | 1,826                                                               | 1,635              | 1,684              | 1,684              |  |  |
|                   | Number of Follow-Up<br>Actions                          | 1,371                                                               | 1,676 <sup>a</sup> | 1,112 <sup>a</sup> | 1,121 <sup>a</sup> |  |  |
| SWMP Targets      |                                                         | Inspect 100% of construction sites > 1 acre, per Permittee policies |                    |                    |                    |  |  |
| 5                 | Follow-Up on 10                                         | 00% of potential                                                    | violations, per l  | Permittee policie  | es                 |  |  |

Notes:

<sup>a</sup> Includes follow-up inspections, correction orders, and violation notices

# 13.2.3 Construction Site Training Workshops (SC-22)

The Permittees provide regular training to their internal construction site inspectors and other staff on construction site-related sources of stormwater pollution, appropriate construction site BMPs, and the proper procedures for conducting construction site inspections. If changes to the program and associated procedures have not occurred and no new inspectors have been on boarded, then a formal workshop may not be conducted. However, the Permittees often provide internal stormwater training to multiple staff departments, which may include construction inspectors or construction inspectors may attend training conducted by other parties.


Collectively, as an SQMC-sponsored function, the Permittees host construction site training workshops that are open to Las Vegas area contractors, developers, and other interested stakeholders. These workshops included presentations from NDEP and NDOT on their specific stormwater-related construction site requirements.

During the permit year, the Permittees updated the Stormwater Training for Construction Contractors workshop. Four training sessions were held for the construction industry: two sessions on June 24, 2024 and two sessions on June 25, 2024. A summary of Permittee attendance at these, and other internal construction site training sessions is provided in Table 13-3.



# Table 13-3: Summary of Construction Site Training Workshops for the Current Permit Year (2023-2024)

| Permittee                                          | Number of Trainings Conducted                                  | Estimated Number of Attendees |  |  |
|----------------------------------------------------|----------------------------------------------------------------|-------------------------------|--|--|
| City of Henderson                                  | 1                                                              | 1                             |  |  |
| City of Las Vegas                                  | 2                                                              | 16                            |  |  |
| City of North Las Vegas                            | 0                                                              | 0                             |  |  |
| Clark County                                       | 10                                                             | 33                            |  |  |
| Permittee Training for Construction<br>Contractors | 4                                                              | 128                           |  |  |
| SWMP Target                                        | Conduct a minimum of one contractor training workshop annually |                               |  |  |



# Section 14

Staff and Resources



# 14 Staff and Resources

Section B.6.3.3.11 of the 2024-2029 NPDES MS4 Permit for the Las Vegas Valley requires Permittees to provide information on annual expenditures for the reporting period, broken down by the major programs indicated in the SWMP. The summary of current expenditures and the anticipated budget for the next permit year are included in Table 14-1 and Table 14-2, respectively.

| Table 14-1: Annual Las Vegas Valley MS4 Program Expenditures for the Current Permit |
|-------------------------------------------------------------------------------------|
| Year (2023-2024)                                                                    |


| Permit Element                                             | Clark County<br>Regional Flood<br>Control District | City of<br>Henderson | City of Las<br>Vegas | City of North<br>Las Vegas    | Clark County |
|------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------|-------------------------------|--------------|
| Public Outreach and Education<br>Program                   | \$200,887                                          | \$21,409             | \$18,939             | \$15,000                      | N/A          |
| Stormwater Monitoring Program                              | \$152,194                                          | N/A                  | N/A                  | N/A                           | N/A          |
| Source Control and MS4<br>Maintenance Program <sup>a</sup> | \$0                                                | \$4,194,860          | \$27,954,797         | \$2,210,000                   | \$9,243,548  |
| Post-Construction Program for<br>NDSR                      | \$10,000                                           | \$1,468,974          | \$907,956            | \$15,000                      | \$1,301,492  |
| Illicit Discharge Detection and<br>Elimination Program     | \$5,000                                            | \$1,493,669          | \$88,563             | \$2,292,000                   | \$34,834,796 |
| Industrial Facility Monitoring<br>and Control Program      | \$0                                                | \$77,881             | \$235,907            | \$77,500                      | \$2,112,465  |
| Construction Site Program                                  | \$10,000                                           | \$121,982            | \$147,188            | \$62,000                      | \$298,069    |
| Watershed Program                                          | \$122,666,696                                      | \$817,053            | \$453,129            | Included in<br>Source Control | \$750,779    |
| MS4 Program Management <sup>b</sup>                        | \$471.420                                          | \$44,567             | \$177,347            | \$77,500                      | \$185,468    |
| TOTAL <sup>c</sup>                                         | \$123,045,248                                      | \$8,240,395          | \$29,983,826         | \$4,749,000                   | \$48,726,617 |

Notes:

<sup>a</sup> Amount does not include funding from CCRFCD. Amount from CCRFCD MWP is included in source control expenditures

<sup>b</sup> This category includes staff and consulting costs, management, and administrative costs, reporting, tracking, Permittee coord ination, and other related costs

<sup>c</sup> There may be expenditures made by the Permittees, SNWA, SNHD, and others that are not captured in this estimate



| Table 14-2: Anticipated Las Vegas Valley MS4 Program Budget for the Next Permit Year |  |
|--------------------------------------------------------------------------------------|--|
| (2024-2025)                                                                          |  |

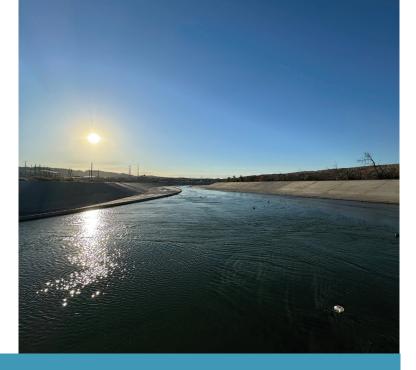
| Permit Element                                             | Clark County<br>Regional Flood<br>Control District | City of<br>Henderson | City of Las<br>Vegas | City of North<br>Las Vegas    | Clark County |
|------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------|-------------------------------|--------------|
| Public Outreach and Education<br>Program                   | \$202,207                                          | \$22,250             | \$24,635             | \$16,000                      | N/A          |
| Stormwater Monitoring Program                              | \$166,732                                          | N/A                  | N/A                  | N/A                           | N/A          |
| Source Control and MS4<br>Maintenance Program <sup>a</sup> | \$0                                                | \$4,837,482          | \$28,087,460         | \$2,275,000                   | \$13,814,776 |
| Post-Construction Program for<br>NDSR                      | \$10,000                                           | \$1,520,738          | \$935,194            | \$16,000                      | \$1,549,541  |
| Illicit Discharge Detection and<br>Elimination Program     | \$5,000                                            | \$530,988            | \$91,220             | \$2,360,000                   | \$52,155,862 |
| Industrial Facility Monitoring<br>and Control Program      | \$0                                                | \$80,606             | \$242,984            | \$80,000                      | \$2,086,645  |
| Construction Site Program                                  | \$10,000                                           | \$126,251            | \$151,604            | \$64,000                      | \$426,302    |
| Watershed Program                                          | \$80,202,800                                       | \$11,000,000         | \$4,586,700          | Included in<br>Source Control | \$5,010,955  |
| MS4 Program Management <sup>b</sup>                        | \$559,153                                          | \$46,127             | \$240,491            | \$80,000                      | \$278,055    |
| TOTAL <sup>©</sup>                                         | \$81,155,892                                       | \$18,164,442         | \$34,360,288         | \$4,891,000                   | \$75,322,136 |

Notes:

<sup>a</sup> Amount does not include funding from CCRFCD. Amount from CCRFCD MWP is included in source control expenditures

<sup>b</sup> This category includes staff and consulting costs, management, and administrative costs, reporting, tracking, Permittee coordination, and other related costs

° There may be expenditures made by the Permittees, SNWA, SNHD, and others that are not captured in this estimate


# 14.1 Funding

The CCRFCD will continue to fund its MS4 program responsibilities from revenue collected from the ¼ cent sales tax that provides funding for all CCRFCD functions. The other Permittees (CC, CLV, CNLV, and COH) will continue to fund their projects primarily from their respective general tax revenues. A portion of the construction program measures (e.g., inspections, design reviews) may also be financed through development permit fees.

# 14.2 Staffing

Although Permittee personnel dedicated solely to the Las Vegas Valley MS4 Program are limited, staff from multiple departments are involved in program activities including: industrial site inspections, construction site inspections, development submittals, and storm drain system maintenance activities.

Overall permit program management activities have also been supported in part by outside consultants, Brown and Caldwell and HDR. Permittee personnel are further supplemented by staff of other agencies that are responsible for performing specific BMPs. For example, the SNWA is responsible for water conservation measures, while the SNHD is responsible for enforcement of illegal discharge ordinances. These relationships are expected to continue into the next permit year.



# Section 15

**Evaluation of Characterization Data** 

# 15 Evaluation of Characterization Data

This section evaluates wet weather characterization data previously submitted and collected. This section also evaluates whether existing data collection programs and BMPs should be modified.

# 15.1 Background

This section describes the regulatory requirements, stormwater management stakeholders, unique stormwater conditions, and wet weather monitoring program in the Las Vegas Valley.

### 15.1.1 MS4 Stormwater Permit

The Nevada Division of Environmental Protection (NDEP) has issued National Pollutant Discharge Elimination System (NPDES) Permit No. NV0021911 jointly to Clark County Regional Flood Control District (CCRFCD), the City of Las Vegas, the City of North Las Vegas, the City of Henderson, and Clark County (Permittees). This Permit, which was originally issued on December 13, 1990, authorized discharges from the Municipal Separate Storm Sewer System (MS4) in Las Vegas Valley. The Nevada Department of Transportation (NDOT) was included in the original permit and subsequently received its own MS4 Permit from NDEP in 2004.

The Permit has been renewed five times with the most current Permit being issued on February 5, 2024. The Permit requires the Permittees to develop and implement a Stormwater Management Plan (SWMP), which the Draft is being submitted. In addition to the structural best management practices (BMPs) discussed within this section, such as the regional detention basins, low-flow features, and channel lining, the Permittees have implemented a range of additional BMPs, including, but not limited to storm drain maintenance, construction site inspections, industrial site inspections, illicit discharge detection and elimination (IDDE), and public information and outreach.

The current Permit requires that the Permittees submit a Stormwater Monitoring Plan to NDEP by August 5, 2025. The Permittees submit wet weather monitoring data as part of their Annual Reports each year. This current evaluation extends the Permittees' reporting of wet weather monitoring data.

# 15.1.2 Clark County and Cities of Henderson, Las Vegas, and North Las Vegas

Las Vegas Valley consists of three incorporated cities and unincorporated Clark County. Each of these entities is responsible for stormwater management within their geographic boundaries, including the construction, operation, and maintenance of regional detention basins, conveyance facilities, and other MS4 facilities. Funding for some MS4 activities comes from the CCRFCD. Figure 15-1 shows a map of the political subdivisions of the Las Vegas Valley.

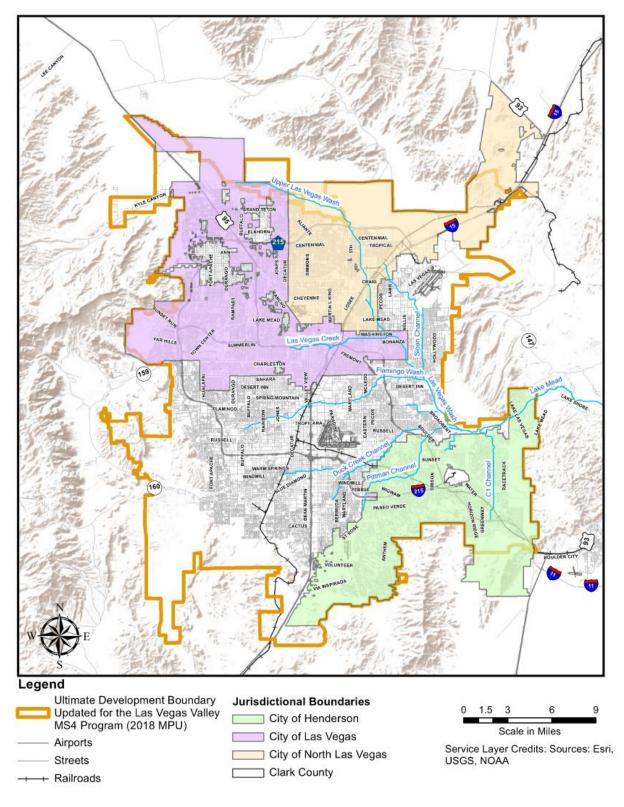



Figure 15-1. Las Vegas Valley Permittee jurisdictional boundaries

## 15.1.3 Clark County Regional Flood Control District

This section describes CCRFCD's background, agency organization, and infrastructure assets.

#### 15.1.3.1 Origin and Process

The CCRFCD was established in 1986 following a series of flooding events in the Las Vegas Valley in the 1970s and early 1980s. Before the CCRFCD was established, virtually everywhere in the Las Vegas Valley was vulnerable to flood flows. Figure 15-2 shows flooding at Caesars Palace in 1975. The CCRFCD was authorized to develop and implement coordinated and comprehensive master plans to solve flooding problems throughout Clark County. Nearly all funding for designing, constructing, and maintaining flood control facilities comes from one-quarter of one percent sales tax in Clark County.

The CCRFCD is a distinct local government agency led by a general manager/chief engineer responsible for analyzing the extent of flood control problems and presenting solutions and recommendations to a Board of Directors. The CCRFCD Board of Directors includes two representatives from Clark County and the City of Las Vegas, and one from the cities of Henderson, North Las Vegas, Boulder City, and Mesquite.



Figure 15-2. 1975 flood on the Las Vegas Strip



#### 15.1.3.2 Detention Basins, Low-Flow Facilities, and Channel Lining

As of June 2024, the Las Vegas Valley includes approximately 88 detention basins, 330 miles of regional underground storm drains, and 305 miles of surface channel, including 194 miles of concrete-lined, rip-rap, or otherwise protected against erosion. Figure 15-3 shows a map of stormwater infrastructure in Las Vegas Valley. All regional facilities are designed to manage runoff from the 100year storm occurring under full build-out conditions in the watershed, with no assumption of onsite peak or volume reductions in new development. Runoff management is primarily accomplished using large regional detention basins that capture runoff from large watershed areas in the Las Vegas Valley. Some of these large regional detention basins have low-flow facilities that detain lower flows that would otherwise pass through. An example of these facilities is shown in Figures 15-4 and 15-5. These basins capture significant volumes of sediment and associated pollutants. The regional detention basins settle out sediment from larger storms, and the low-flow features settle out sediment from smaller storms. All detention basins are routinely inspected and sediment is removed as provided in CCRFCD's Operations and Maintenance Manual. For example, sediment may be removed from a detention basin when it accumulates a thickness of 1 to 2 feet. Some detention basins, such as those at the edge of development, fill up relatively guickly with dirt from the surrounding desert and are cleaned out frequently. Other detention basins need very little sediment removal. Figure 15-6 shows a pile of dirt in the process of being removed from Oakey Detention Basin. In addition to regional detention basins, the CCRFCD and its member agencies reduce bed and bank erosion in the Las Vegas Valley through extensive channel lining using concrete or other materials.

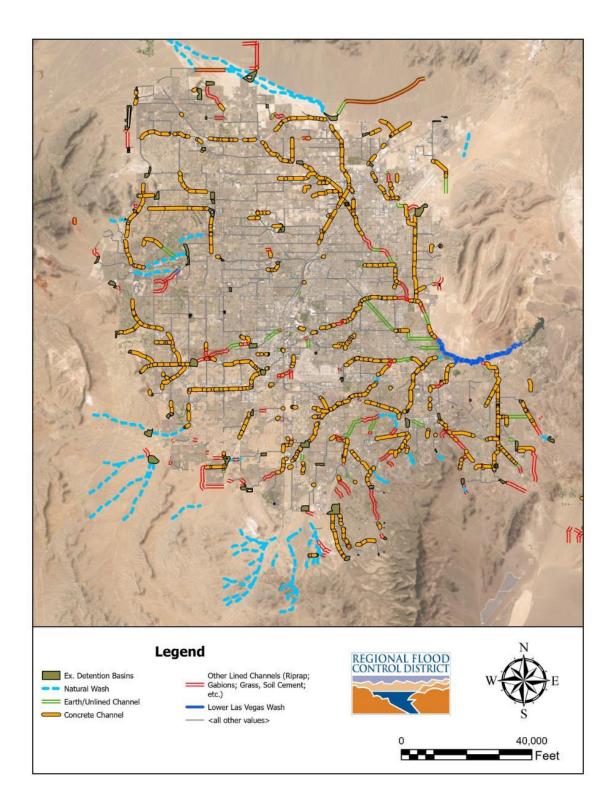



Figure 15-3. Map of stormwater infrastructure in the Las Vegas Valley





Figure 15-4. Oakey Detention Basin



Figure 15-5. Low-flow facility at Oakey Detention Basin





Figure 15-6. Sediment removal at Oakey Detention Basin

## 15.1.4 Erosion Control Structures

During the 1960s and 1970s, flows from the municipal wastewater treatment plants created wetlands in the lower Las Vegas Wash. During the 1970s and 1980s, however, erosion in the lower Las Vegas Wash reduced these wetlands and resulted in significant erosion into Lake Mead. In order to address this issue, the Las Vegas Wash Coordination Committee was formed in 1998 to prepare and implement a management strategy for the Las Vegas Wash (known as the Comprehensive Adaptive Management Plan or "CAMP"). A key element of the CAMP was to construct grade control structures in the eroding sections of the lower Las Vegas Wash to stabilize erosion and support new wetlands. Since 2000, the Southern Nevada Water Authority (SNWA) has constructed 21 erosion control structures or weirs and stabilized more than 13 miles of channel banks. Around the same time, Clark County created the Clark County Wetlands Park which consists of a large portion of the lower Las Vegas Wash. These efforts have significantly reduced erosion and sediment transport and restored and expanded the wetlands. Figure 15-7 shows the location of the weirs in the lower Las Vegas Wash.



This Page Intentionally Left Blank.

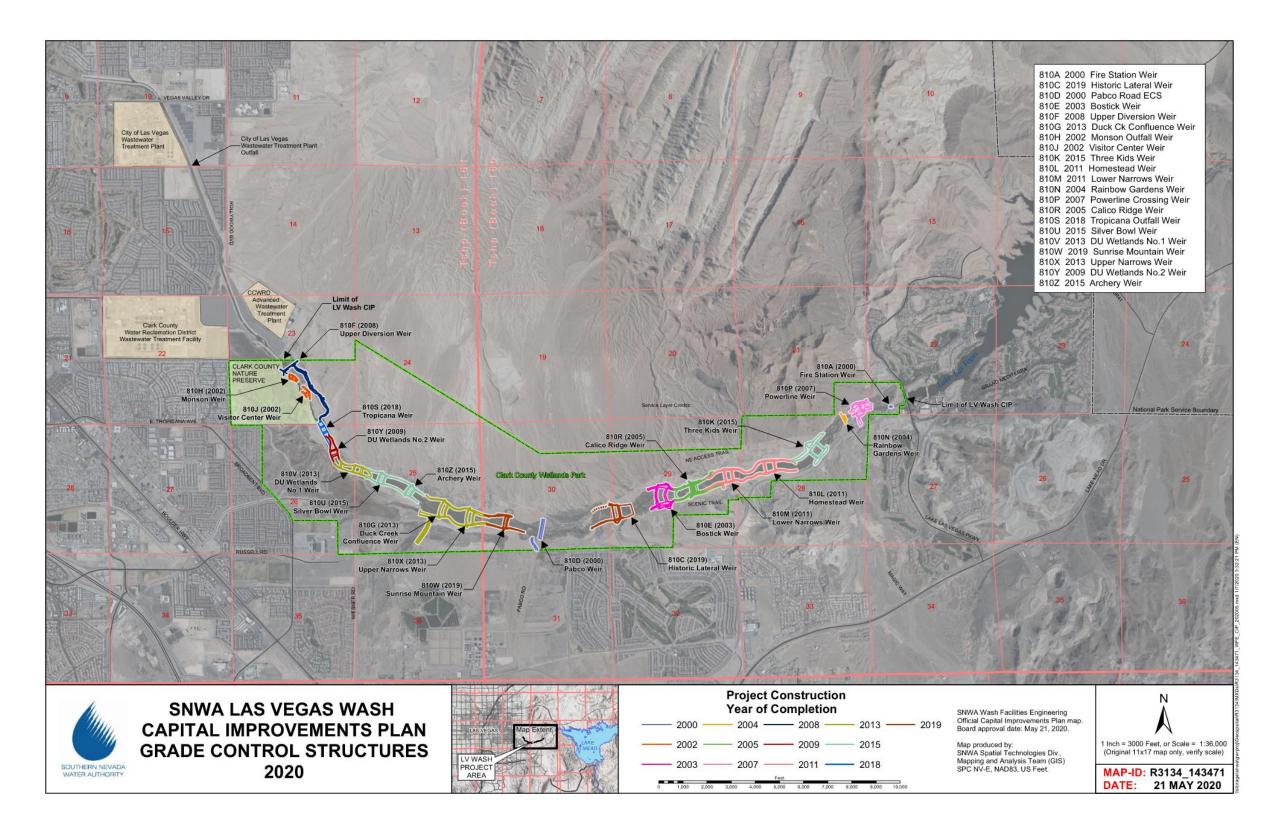



Figure 15-7. SNWA weir construction along Las Vegas Wash

2023-2024 Annual Report Municipal Separate Storm Sewer System Permit





This Page Intentionally Left Blank.

# 15.1.5 Unique Conditions in the Las Vegas Valley

Local conditions in the Las Vegas Valley are unique compared to other large metropolitan areas in the U.S. As a result, complying with MS4 Permit requirements may need a different approach from other regions of the United States. This section summarizes the factors that make the Las Vegas Valley unique and describes the implications of these unique factors in developing an appropriate MS4 program.

### 15.1.5.1 Climatic Factors

With a mean annual rainfall of 4.2 inches, the Las Vegas Valley is the driest large MS4 in the nation (see Table 15-1). Depending on soil and site conditions, developed areas and construction sites have the potential to produce measurable runoff on an average of only 6 to 11 days per year. Most runoff-producing events are short-duration (less than 3 hours) thunderstorms of limited areal extent, which may affect one part of the Valley but not other areas. The median number of dry days between rainfall events that produce runoff greater than 0.2 inches at the Harry Reid Airport gauge is 22 days, but dry periods can last for many months. This is representative of any given location in Las Vegas Valley.

| Community          | Mean Annual Rainfall (inches) |  |
|--------------------|-------------------------------|--|
| Las Vegas, NV      | 4.2                           |  |
| Pheonix, AZ        | 7.2                           |  |
| Reno, NV           | 9.2                           |  |
| Riverside, CA      | 9.4                           |  |
| San Diego, CA      | 12                            |  |
| Tucson, AZ         | 12                            |  |
| Los Angeles, CA    | 12                            |  |
| Sacramento, CA     | 18                            |  |
| San Bernardino, CA | 22                            |  |
| San Francisco, CA  | 23                            |  |
| Seattle, CA        | 37                            |  |
| Portland, OR       | 37                            |  |

Table 15-1: Mean Annual Rainfall in Western United States Cities

Source: NOAA U.S. Climate Normals, https://www.ncei.noaa.gov/access/us-climate-normals/

Most of the water used in the Las Vegas Valley comes from the Colorado River, which is heavily regulated. SNWA and the Permittees have been working for decades to reduce outdoor water use in Las Vegas Valley, for example by prohibiting turf (such as lawns that require regular watering) in new developments and paying property owners to replace turf with more appropriate desert landscaping.

Traditional BMPs that rely on vegetation for treatment are not recommended. In the Las Vegas Valley, using vegetation as a BMP would require extensive artificial irrigation if it were to be maintained as part of site landscaping. These BMPs would be inconsistent with the water conservation objectives of SNWA and the ordinances established by the Permittees.

### 15.1.5.2 Hydrologic Factors

The lower Las Vegas Wash is the receiving water for all storm runoff and other flows in the Las Vegas Valley. Annual flow in the lower Las Vegas Wash is comprised of about 90 percent wastewater effluent, 6 percent urban dry weather contributions, of which about half are from urban runoff and half from surfacing groundwater, and 4 percent storm runoff. The tributary channels to the lower Las Vegas Wash are not influenced by wastewater effluent. In these tributary channels, annual flow volumes comprise about 50 percent dry weather baseflows and 50 percent storm runoff. Most parts of the MS4 system in the Las Vegas Valley are dry for the entire year except in response to rainfall. When storm runoff does occur, it is typically of very short duration and extent (e.g., a few hours).

### 15.1.5.3 Geologic Factors

Caliche, expansive soils, and collapsible soils are widespread throughout the Las Vegas Valley, and compromise the effectiveness of standard infiltration BMPs. Caliche maps for the Las Vegas Valley are not available. As a result, the presence of any of these geologic conditions must be evaluated on a site-specific basis through geotechnical evaluations. This makes infiltration BMPs inappropriate for stormwater disposal in most areas of the Las Vegas Valley. In areas where infiltration is possible, it remains undesirable because infiltration can lead to other potential problems, including exacerbating the transport of naturally occurring selenium through the shallow aquifer into the lower Las Vegas Wash. Considering these factors, Figure 15-8 depicts the areas in which infiltration would be an unsuitable stormwater disposal method, principally because of geologic factors and high selenium shallow groundwater.

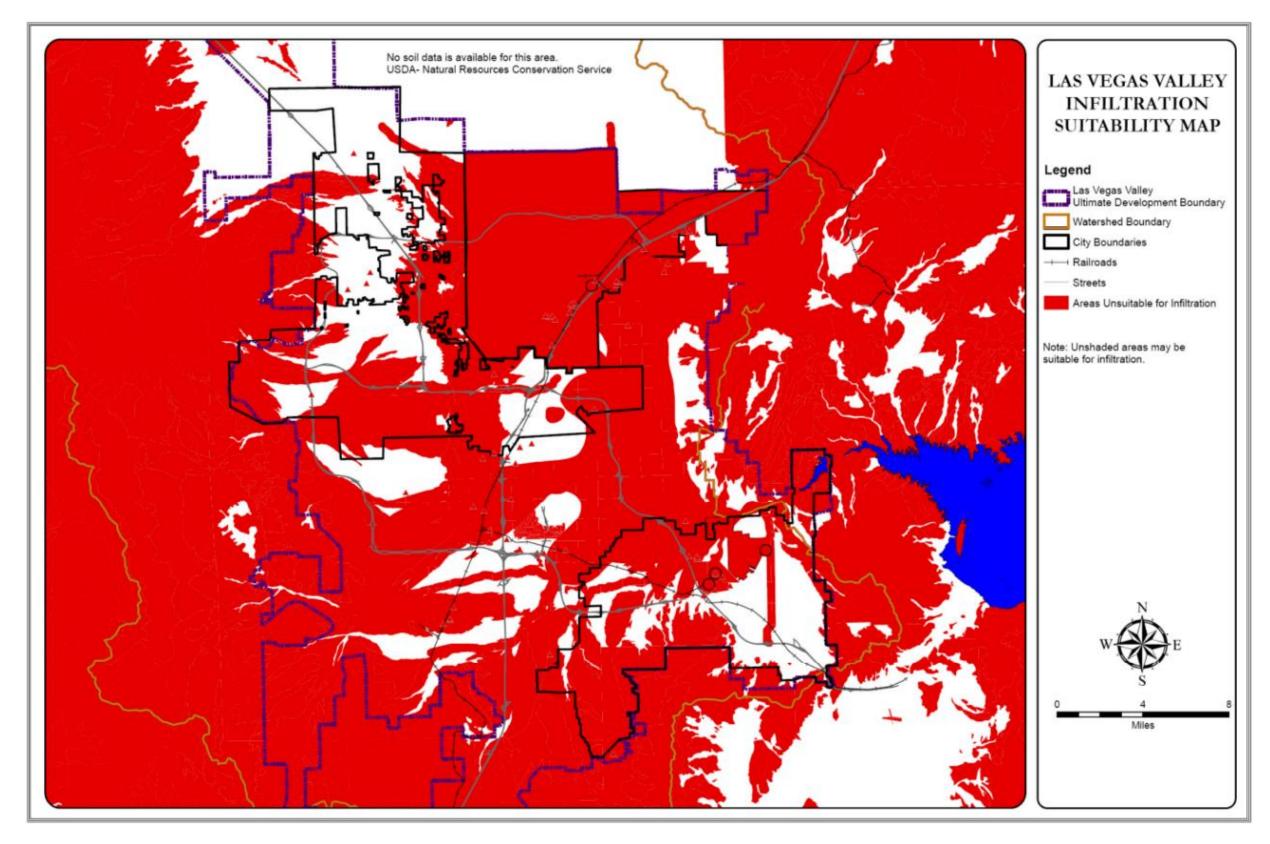



Figure 15-8. Las Vegas Valley infiltration suitability map





This Page Intentionally Left Blank.



### 15.1.5.4 Hydrogeologic Factors

The Las Vegas Wash aquitard creates a shallow alluvial aquifer and areas of perched groundwater that are of poor quality and are not beneficially used. Figure 15-9 shows the general hydrogeologic conditions in the Las Vegas Valley. A separate deep aquifer is used as a source of local water supply. Virtually all recharge to the deep aquifer occurs along the mountain front of the Spring Mountains, located on the western side of the Las Vegas Valley. The Las Vegas Wash aquitard forces groundwater to the surface in tributary channels near the lower Las Vegas Wash and in the Las Vegas Wash itself.

As described, flow of infiltrated surface water through native soils significantly increases total dissolved solids (TDS) and selenium concentrations. In the Las Vegas Valley, the shallow groundwater is high in TDS and selenium. Elevated TDS and selenium concentrations are ubiquitous across the Colorado River Basin, and the Colorado River Basin Salinity Control Program has been developed to respond to TDS issues.

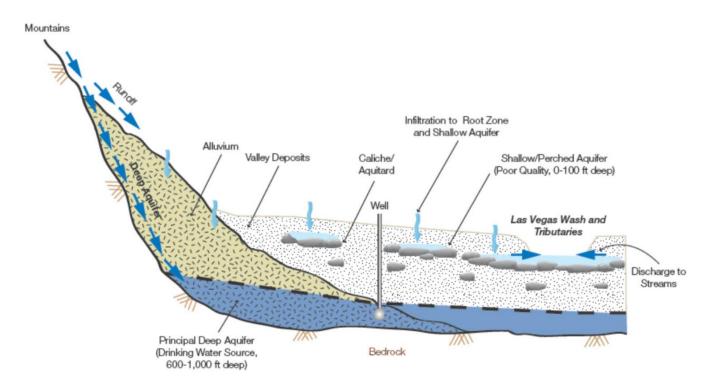



Figure 15-9. Hydrogeologic schematic of Las Vegas Valley

### 15.1.5.5 Watershed and Land Use Factors

High rates of erosion and sediment transport occur naturally in the Las Vegas Valley watershed and are primarily associated with high flow events (greater than the 2-year event). Land development in Las Vegas Valley tends to stabilize the watershed surface and reduce soil loss compared to native conditions. Figure 15-10 shows uphill undisturbed conditions to the left and downhill developed areas to the right.



# Figure 15-10. Aerial photograph of new development adjacent to undisturbed area in the Las Vegas Valley

The Las Vegas Valley has been one of the fastest growing urban areas in the nation. Almost 1.5 million people moved to the area between 1980 and 2008, a 300 percent increase in population. Since 2008, the population has increased by another 20 percent. New development is occurring in an outward pattern from the center of the Las Vegas Valley in nearly all directions. The majority of new development consists of residential housing and associated commercial development. Construction is a significant part of the Nevada economy. It employs about 110,000 workers in the state and contributes about 7.5 percent of Nevada's gross domestic product (AGC, 2023). Land use and development also includes large hotels and casinos. The majority of significant redevelopment consists of new hotels, casinos, and high-rise residential development in the vicinity of the Las Vegas Strip and Interstate 15. The Las Vegas Valley hosts over 40 million visitors per year, highlighting the importance of the hotel, casino, and tourism industries to the local economy and landscape.

### 15.1.5.6 Legal and Water Rights Factors

The Nevada State Engineer's Office requires permits for the capture of surface waters that are put to beneficial use and must demonstrate that current water rights holders are not injured by the proposed diversion. New developments that desire to implement onsite stormwater retention would be required to contact the State Engineer to determine if a surface water permit would be required.

### 15.1.5.7 Conclusions About Unique Conditions in the Las Vegas Valley

The unique factors described in this section lead to several important conclusions for developing a stormwater management program for the Las Vegas Valley in compliance with the MS4 Permit:

• The Las Vegas Valley is the driest large MS4 in the nation. Most parts of the MS4 system in the Las Vegas Valley are dry except in response to rainfall. In the lower Las Vegas Wash,

about 90 percent of annual flows are from wastewater effluent. BMPs that rely on constant or frequent water flows for pollutant removal effectiveness, such as wetlands or vegetation, are not feasible in most of the Las Vegas Valley. Instead, regional watershed-level controls that capture stormwater from large drainage areas are more technically feasible and cost effective.

- Traditional BMPs that rely on vegetation for treatment are not recommended because they would require extensive artificial irrigation.
- The presence of caliche, expansive clays, and collapsible soils in the Las Vegas Valley creates unsuitable conditions for infiltration as a stormwater disposal method. In places where infiltration is feasible, it may not be desirable due to the potential to increase the shallow groundwater levels and the transport of unfavorable water quality constituents (e.g. TDS and selenium).

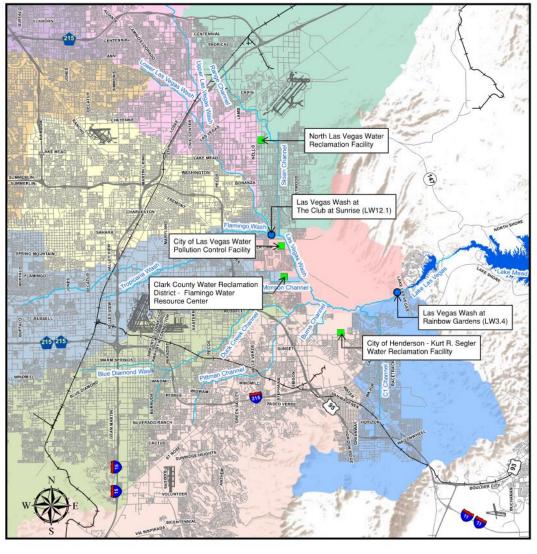
### 15.1.6 Wet Weather Monitoring Program

The CCRFCD conducts a wet-weather monitoring program for compliance with the MS4 permit on behalf of the Permittees. Sampling is conducted at the following two locations:

- Las Vegas Wash at The Club at Sunrise, located approximately 12.1 miles upstream of the confluence of the lower Las Vegas Wash and Lake Mead; and
- Las Vegas Wash at Rainbow Gardens, located approximately 3.4 miles upstream of the confluence of the Las Vegas Wash and Lake Mead.

The Las Vegas Wash at The Club at Sunrise is the new name for the site formerly referred to as Las Vegas Wash at Desert Rose. The former title is used in long term data records. The Las Vegas Wash at The Club at Sunrise site is located on the Las Vegas Wash immediately upstream of the Sloan Channel and Las Vegas Wash confluence. This part of the Las Vegas Wash is fully concreted lined. The stormwater sampler is permanently installed about 18 inches above the channel bottom. This sampling location is upstream of all wastewater treatment plant discharges in the Las Vegas Valley.

The Las Vegas Wash at Rainbow Gardens site is on the lower Las Vegas Wash at the upstream end of the concrete face of the Rainbow Gardens Weir, about 6 to 12 inches above the ordinary water level. It is downstream of all wastewater treatment plants and 99 percent of the watershed area covered by the MS4 Permit. A map of these monitoring sites is shown in Figure 15-11.


Sampling crews are mobilized to track and gather samples during potentially sampleable storm events. Due to the variability in localized rainfall, both sites are not always sampled during each storm. The CCRFCD website (www.regionalflood.org) and United States Geological Survey (USGS) website (www.waterdata.usgs.gov) are used to view stream flow stage data for numerous gauges in the Las Vegas Valley. During a sampling event, the automated samplers are activated when the water level in the channel reaches the wire actuator. The samplers are programmed to collect enough water to fill 24 bottles sized at 1,000 milliliters (also called aliquots). Currently, the Las Vegas Wash at The Club at Sunrise site is programmed to collect a sample at 3-minute intervals and the Las Vegas Wash at Rainbow Gardens site is programmed to collect at 5-minute intervals. The 24 aliquots are then combined in a carboy into a composite sample.

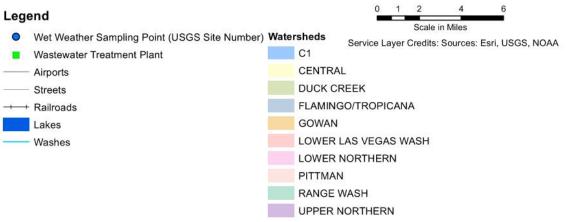
In the initial wet weather sampling program implemented in the 1990s, monitoring stations were located on each of the major tributary channels. At the time, some of those channels drained areas

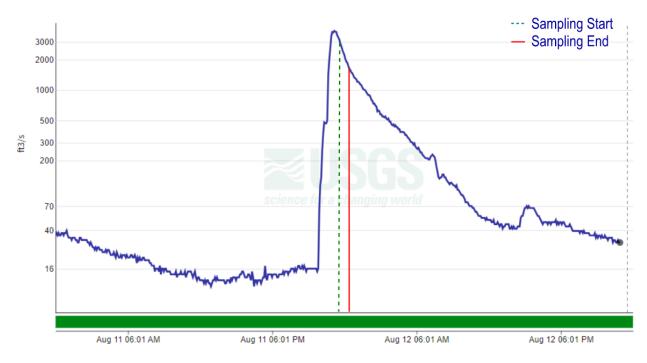
that were only lightly urbanized, whereas others drain areas that were fully urbanized. Because of the large increase in population, all tributary channels now drain urbanized areas.

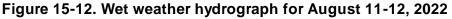
Data from the original monitoring locations were highly variable, particularly for suspended solids, and useful distinctions could not be identified. In 2006, in coordination with NDEP, the sampling stations were revised to the current two sites. The current monitoring stations were located to monitor stormwater quality above and below the wastewater treatment plant discharging sites.

2(

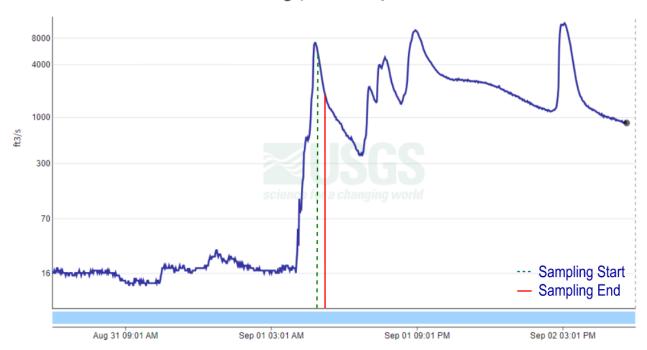






Figure 15-11. Wet weather monitoring locations and watersheds


# 15.2 Evaluation of Wet Weather Hydrographs

A hydrograph shows changes in flow over time at a particular location. Hydrographs for several locations in the Las Vegas Valley are available from the USGS. To evaluate wet weather monitoring data, USGS gauging stations located close to the two sampling locations were used, including:


- Las Vegas Wash Below Flamingo Wash Confluence Near Las Vegas, NV 094196783, which is in close proximity to The Club at Sunrise; and
- Las Vegas Wash Above Three Kids Wash Below Henderson, NV 09419753, which is in close proximity to Rainbow Gardens.

Some hydrographs at these stations showed the shape of a classic storm, with steeply rising flows at the beginning of the storm and relatively slowly decreasing flows after the peak. The hydrograph for The Club at Sunrise on August 11-12, 2022, shown in Figure 15-12, is an example. The storms in the Las Vegas Valley are generally of short duration.





Some storms do not show the classic shape. An example is the hydrograph for The Club at Sunrise on September 1, 2023, as shown in Figure 15-13. Multiple peaks may result from intense but short duration storms in different areas of the Las Vegas Valley or from trailing storms that occur over the same area.



### Discharge, cubic feet per second

### Figure 15-13. Wet weather hydrograph for September 1, 2023

When a storm is approaching, the sampling team is on alert and watches the CCRFCD and USGS rain and flow gauges to assess if there will be enough stormwater to sample. Often times, storms may peak in the middle of the night, and sampling crews must be ready to respond at any time. If the crew determines there is enough runoff to sample, the crews mobilize to the sampling site and initiate sampling when there is sufficient flow. When the team arrives at the sampling site, flows are likely to be increasing rapidly, and the sampling crew cannot determine when the peak flow will arrive. A review of the hydrographs and sampling times shows that sampling crews generally sample at the peak flow or shortly before or after. Although sampling at the peak flow is not likely to be representative of the entire storm, it may assess the highest concentrations.

Concerns have been raised in the scientific literature about the possibility that the highest concentrations during a storm may be present in the "first flush" of stormwater. The concept is that materials build up during dry weather and then are washed off quickly when rainfall is initiated. Conceptually, however, some materials will wash off quickly because they are lightweight and have not stuck to the pavement, whereas others will wash off slowly since they are heavier or stuck to the pavement. Also, the amount of material that might be present at the initiation of a storm is affected by maintenance activities, including street sweeping activities, which are designed to remove material buildup. For these reasons, perhaps, studies in the scientific literature of first flushes have been inconsistent.

The figures in Appendix B show the hydrographs for all sampling events at The Club at Sunrise and Rainbow Gardens since 2010, with the most recent first. Each figure includes a table that shows the sampling start and end times, flows at the beginning and end times, and the average flow during the sampling event. The tables also show the peak flow for the storm event. The sampling crews successfully monitored during an appropriate time in every sampleable storm.

# 15.3 Evaluation of Suspended Solids and Turbidity Data

This section describes the total suspended solids (TSS) and turbidity data collected as a part of the wet weather monitoring program and draws conclusions from the data.

# 15.3.1 Significance

A large part of the Permittees' stormwater management program is directed at the control of sediment, especially the retention of soil onsite. The wet weather monitoring program includes two parameters, TSS and turbidity, which measure sediment suspended in water. TSS and turbidity data have the potential to evaluate the effectiveness of the Permittees' stormwater management program. This data can, for example, be used to determine whether higher flows produce higher concentrations of suspended solids, whether materials build up during extended dry weather intervals, and whether suspended solids concentrations exceed background concentrations. EPA and NDEP have repeatedly focused on the transport of sediments and constituents attached to sediments when evaluating stormwater management programs.

# 15.3.2 Comparison of Suspended Solids and Turbidity Data

Although suspended solids measure the weight of materials suspended in the water, and turbidity measures the transmission of light through the water, both are affected by the presence of suspended material. Conceptually, if the material being suspended is relatively uniform, a consistent relationship between TSS and turbidity should be observed. When TSS is high, turbidity should also be high. Both TSS and turbidity data, however, can include measurements that do not accurately represent the actual conditions in the ambient waters. The suspended solids and turbidity data since 2010 were compared to determine whether TSS and turbidity produce a consistent relationship. Before 2010, both sampling locations have limited turbidity data.

An initial evaluation of TSS versus turbidity at The Club at Sunrise showed several points that did not conform to the expected relationship between the two parameters. For most of the data, the suspended solids concentration in milligrams per liter (mg/L) appeared to be twice as high as the turbidity in nephelometric turbidity units (NTU), plus or minus 60 percent, as shown in Figure 15-14.

A disparity between TSS and turbidity measurements in the same sample might result from different sizes in particle size and clumpiness, or from a problem with the sample collection or analysis, which might suggest that the data do not consistently represent the actual conditions. When most of the TSS and turbidity data are tightly correlated, it is preferable to use the tightly correlated data, which are not affected by differences in the two measurements. Using the disparate data may obscure underlying relationships.

With this in mind, the data were re-evaluated with the points outside of this range removed, as shown in Figure 15-15. Once the data was re-evaluated, the points within that range formed a tight relationship.

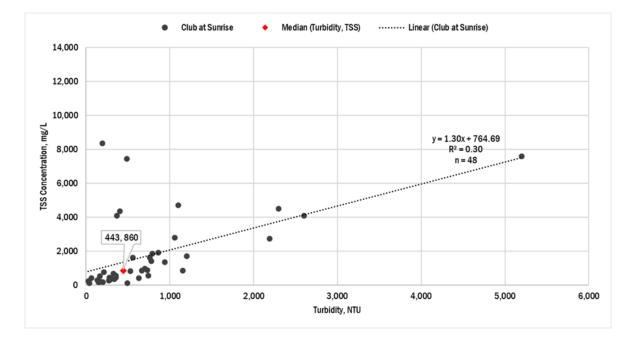
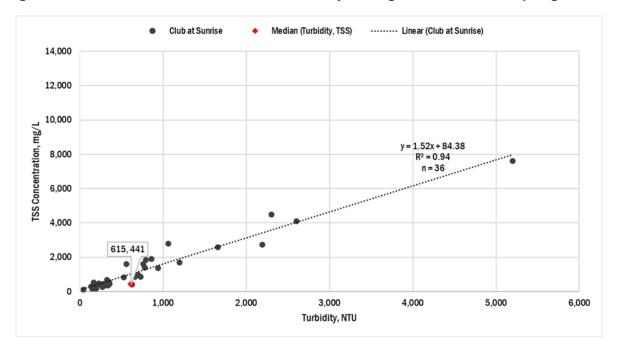




Figure 15-14. Club at Sunrise: TSS vs. turbidity during wet weather sampling events



#### Figure 15-15. Club at Sunrise: TSS vs. turbidity during wet weather sampling events

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

The same analyses were performed with data from Rainbow Gardens, as shown in Figures 15-16 and 15-17. Once again, data with a ratio within the range of 2.0 plus or minus 60 percent lined up very tightly. For the analyses that follows, data within this range were used. These data appear to be best suited to represent stormwater conditions in the Las Vegas Valley.

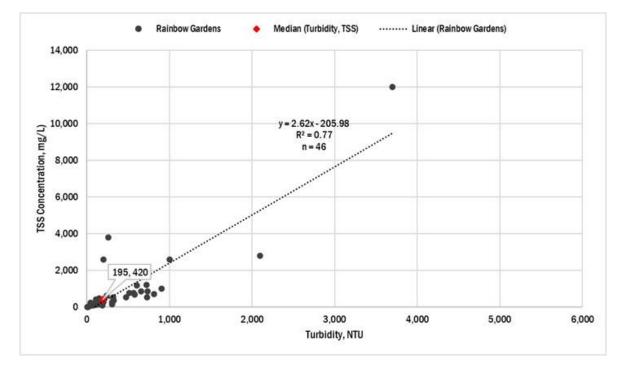
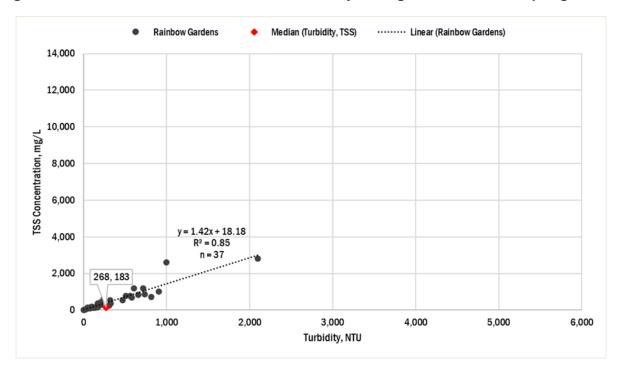
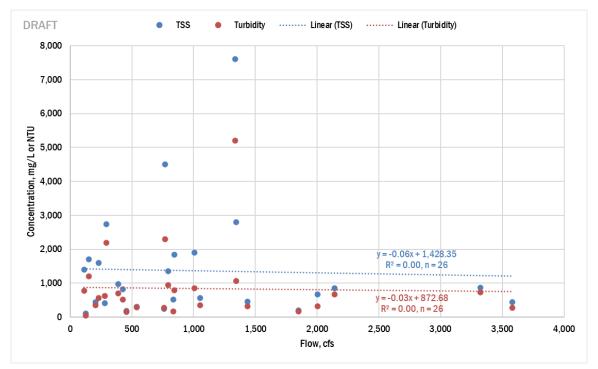




Figure 15-16. Rainbow Gardens: TSS vs. turbidity during wet weather sampling events



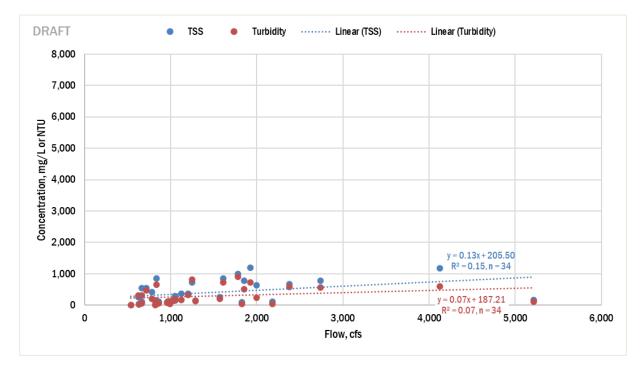
### Figure 15-17. Rainbow Gardens: TSS vs turbidity during wet weather sampling events

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.


## 15.3.3 Evaluation of Effects of Increasing Flows

Generally, higher stream flows are accompanied by higher velocities, which have more energy and therefore more capacity to carry suspended materials. As a result, higher stream flows are generally

expected to have higher concentrations of suspended solids than lower stream flows. Wet weather monitoring data for the Las Vegas Valley were evaluated to assess whether higher flows produced higher concentrations of suspended solids and turbidity.


At both locations, TSS concentrations and turbidity levels remained roughly constant as flow increased. At The Club at Sunrise, some elevated TSS concentrations and turbidity levels were observed at lower flows, but elevated concentrations were not observed at higher flows, as shown in Figure 15-18. At Rainbow Gardens, no unusually elevated concentrations were observed, as shown in Figure 15-19.

It appears that TSS concentrations and turbidity levels did not increase substantially with increasing flow because of the extensive channel lining and stabilization program—funded by the CCRFCD and implemented by the Permittees—throughout the Las Vegas Valley. When channels are lined in concrete, as many channels in the Las Vegas Valley are, they are protected against bed and bank erosion caused by high velocities. The regional detention basins, of which there are 87 in the Las Vegas Valley, are designed to capture peak flows and release the water slowly enough so that they do not cause damage downstream. Sediment in the water captured by the regional detention basins settles in the detention basin, which prevents it from moving downstream.

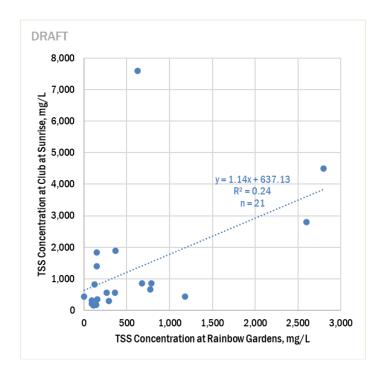


# Figure 15-18. Club at Sunrise: TSS & turbidity vs. flow during wet weather sampling events

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

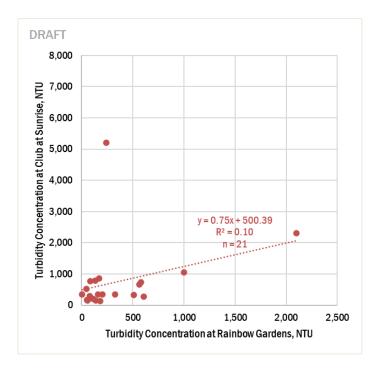


# Figure 15-19. Rainbow Gardens: TSS & turbidity vs flow during wet weather sampling events


Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

# 15.3.4 Comparison of Upstream and Downstream Monitoring Points

Upstream and downstream TSS concentrations and turbidity levels were compared to assess whether there were substantial differences between the two locations. As shown in Figures 15-20 and 15-21 below, the stations are quite similar, although Rainbow Gardens has lower TSS concentrations and turbidity levels. This relationship can also be seen in Figures 15-18 and 15-19, discussed in Section 15.3.3. It appears that the erosion control structures and bank stabilization described in Section 15.1.4 protect downstream lower Las Vegas Wash against bed and bank erosion caused by high velocities.


This analysis leads to the conclusion that no additional monitoring stations are needed for the Las Vegas Valley. The Club at Sunrise location effectively monitors stormwater conditions upstream of the wastewater treatment plants, and the Rainbow Gardens location effectively monitors stormwater conditions for the whole of the Las Vegas Valley. The similarity in results for these two stations implies that stormwater quality is generally similar across Las Vegas Valley.



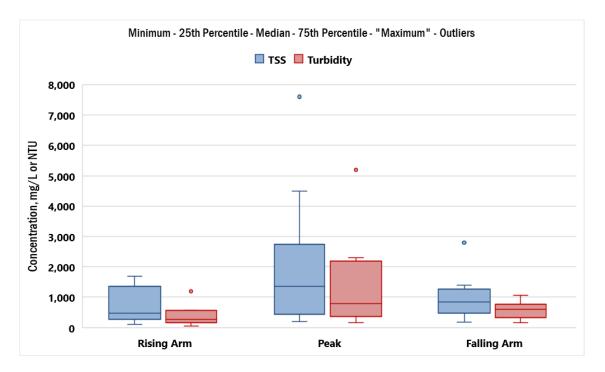


### Figure 15-20. Upstream vs. downstream TSS during wet weather sampling events

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.



#### Figure 15-21. Upstream vs. downstream turbidity during wet weather sampling events

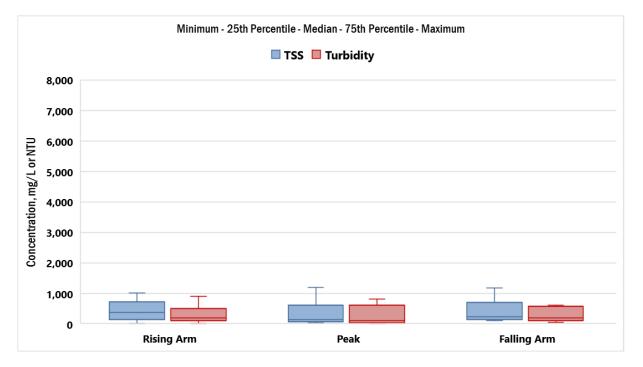

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.



## 15.3.5 Comparison of Samples Taken by Location on Hydrograph

As noted in Section 15.3, concerns have been expressed that the highest concentrations of materials in stormwater might occur during the "first flush," in other words at the beginning of the storm, rather than at peak flows. Here, the data were evaluated to assess whether TSS concentrations and turbidity levels were consistently higher when the samples were taken on the rising arm, peak, or falling arm of the hydrograph. The location of each sampling event on its respective hydrograph is shown in Appendix B.

As shown in Figure 15-22, the highest TSS concentrations and turbidity levels at The Club at Sunrise occurred during peak flows. The upper whisker, although identified as the "maximum," is not the true maximum. The Excel software identifies the maximum of points not greater than 150 percent of the interquartile range (difference between the 75th and 25th percentile). Those points that are greater than the "maximum" are identified as outliers. Each box and whisker plot represents 7 to 16 data points.




### Figure 15-22. Club at Sunrise: Sample location on hydrograph

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

As shown in Figure 15-23, the results were somewhat different at Rainbow Gardens. TSS concentrations and turbidity levels were not substantially higher during peak flows. Overall, TSS concentrations and turbidity levels were quite low at all locations on the hydrograph.





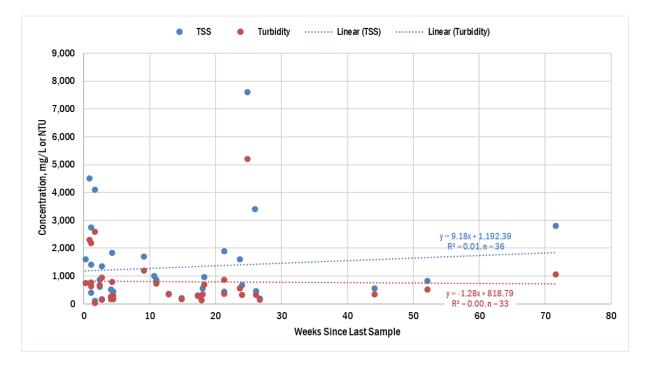

### Figure 15-23. Rainbow Gardens: Sample location on hydrograph

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

These figures do not identify any reason to focus the sampling on a specific portion of the hydrograph. Sampling crews cannot determine where on the hydrograph they are sampling, unless the peak has already occurred. Because of these practical difficulties and lack of differences in the data, the current sampling program should be maintained.

### 15.3.6 Evaluation of Effects of Extended Intervals of Dry Weather

Storms in the Las Vegas Valley can come close together or be separated by long intervals. As shown in Figures 15-24 and 15-25, the time between wet weather samples was as little as less than a week and as great as 72 weeks. When there is a long interval between storm events, there is a long time for material to build up on impervious surfaces, if it is not swept up. A greater buildup could conceptually result in greater concentrations of materials in stormwater. Figures 15-24 and 15-25, however, show that TSS concentrations and turbidity levels do not substantially increase when there are long dry periods between rain events.



### Figure 15-24. Club at Sunrise: Concentration vs. weeks since last sample

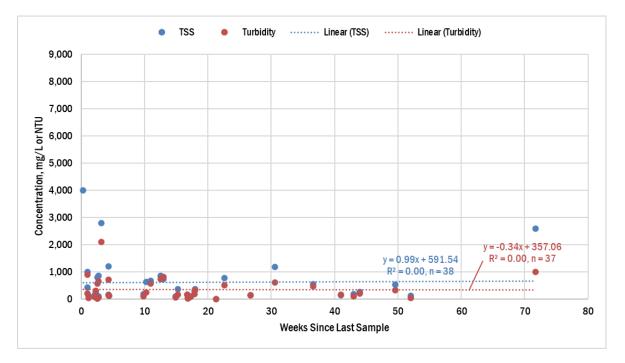



Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

# Figure 15-25. Rainbow Gardens: Concentration vs. weeks since last sample

Figure only includes data within 0.8:1 to 3.2:1 TSS:Turbidity ratios.

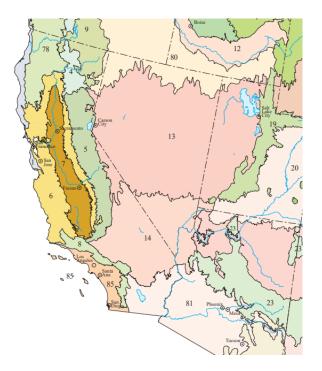
Higher concentrations when storms are close together may be attributed to a first storm loosening the soil and a second storm carrying it off. The Club at Sunrise shows elevated concentrations between 20 and 30 weeks. These peaks are not seen at Rainbow Gardens and may be attributed to

unrepresentative data. The absence of an upwards trend may be explained either by the effectiveness of the Permittees' street sweeping program and debris cleanout, and/or because material buildup on impervious surfaces is not a significant source of solids in stormwater.

# 15.3.7 Comparison of Las Vegas Valley Data with Regional Data

The California State Water Resources Control Board (SWRCB) has recognized that natural or background TSS concentrations vary dramatically depending on the characteristics of an ecoregion. In the fact sheet for its General Construction Stormwater Permit, the California SWRCB provided Table 15-2.

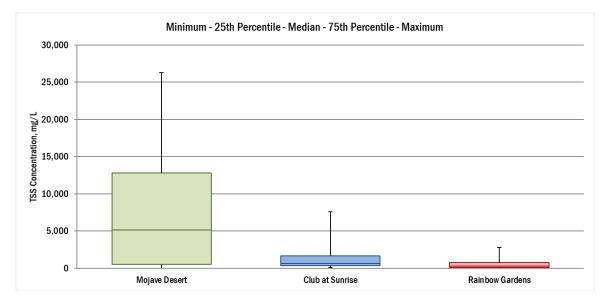
| Ecoregion | Ecoregion Name                                | Percent of<br>California Land Area | Median Suspended Sediment<br>Concentration (mg/L) |
|-----------|-----------------------------------------------|------------------------------------|---------------------------------------------------|
| 1         | Coast Range                                   | 9.1                                | 874                                               |
| 4         | Cascades                                      | 0.2                                | 120                                               |
| 5         | Sierra Nevada                                 | 8.8                                | 35.6                                              |
| 6         | Central CA Foothills and Coastal<br>Mountains | 20.7                               | 1,530                                             |
| 7         | Central CA Valley                             | 7.7                                | 122                                               |
| 8         | SoCal Mountains                               | 3.0                                | 47.4                                              |
| 9         | Eastern Cascades Slopes and Foothills         | 9.4                                | 284                                               |
| 13        | Central Basin and Range                       | 5.2                                | 143                                               |
| 14        | Mojave Basin and Range                        | 21.7                               | 5,150                                             |
| 78        | Klamath Mountains/CAHigh North Coast<br>Range | 8.1                                | 581                                               |
| 80        | Northern Basin & Range                        | 2.4                                | 199                                               |
| 81        | Southern CA/ Northern Baja Coast              | 3.7                                | 503                                               |


Table 15-2: Suspended Sediment Concentration in California Ecoregions

Source: California State Water Resources Control Board Division of Water Quality Construction General Permit Fact Sheet (https://www.waterboards.ca.gov/water\_issues/programs/stormwater/docs/constpermits/wqo\_2009\_0009\_factsheet.pdf)

The data in this table were developed by Simon et al. (Simon et al., 2004) of the U.S. Department of Agriculture. These data show that TSS concentrations in the Mojave Basin and Range are far greater than any other ecoregion. These high concentrations may result from a lack of plants holding down the dirt. The experience in Las Vegas Valley confirms that a great deal of sediment is washed off the undeveloped surrounding area and into the regional detention basins at the surrounding edges of the developed area.

Figure 15-26 shows a map of the ecoregions with southern Nevada in the Mojave Basin and Range ecoregion, which is number 14.






### Figure 15-26. Level III ecoregions of the southwestern U.S.

Source: EPA, 2013, (https://gaftp.epa.gov/epadatacommons/ORD/Ecoregions/us/Eco\_Level\_III\_US.pdf)

Data from the wet weather monitoring program for the Las Vegas Valley were compared to the data provided by Simon et al. for the Mojave Basin and Range. The results are shown in Figure 15-27.



# Figure 15-27. Regional TSS comparison to Las Vegas Valley wet weather monitoring stations

This comparison shows that the stormwater management program for the Las Vegas Valley is highly effective. The median TSS concentration for the Mojave Basin and Range is 5,150 mg/L (baseline), compared with the median of 615 mg/L for The Club at Sunrise and 268 mg/L for Rainbow Gardens.

Median TSS concentrations at Rainbow Gardens are therefore 1/20th of the background concentrations for the Mojave Basin and Range.

# 15.3.8 Sensitivity of the Las Vegas Valley and Lake Mead to Suspended Solids and Turbidity

The Las Vegas Valley is not particularly sensitive to TSS concentrations and turbidity levels because most of it is not fish habitat. Historically, there does not appear to have been perennial stream flows in the Las Vegas Valley reaching Lake Mead or the Colorado River. At present, there are fish in lower Las Vegas Wash downstream of The Club at Sunrise, but habitat degradation has not been an issue since the erosion control structures were installed.

The water potentially sensitive to TSS concentrations and turbidity levels in the area is Lake Mead, which is downstream of the Las Vegas Valley. From the 1970s through the 1990s, lower Las Vegas Wash was heavily eroded by large storms. Sediment from lower Las Vegas Wash flowed into Lake Mead, where it quickly settled out. In response, the erosion control structures described in Section 15.1.4 were constructed, and since then the lower Las Vegas Wash above Lake Las Vegas has been stabilized. The dam that formed Lake Las Vegas constructed in 1991 also helped stabilize lower Las Vegas Wash.

Beginning in approximately 2000, lowering lake levels exposed a large part of Las Vegas Bay that had previously been underwater. Lake levels dropped approximately 145 feet between 2000 and today. The former lake bottom began to be eroded away. Structures were built to stabilize these areas and stabilization efforts are continuing. Regional detention basins help protect against erosion by reducing peak flows during storm events.

As stormwater from Las Vegas Valley enters Lake Mead, the water slows down and solids fall out. Elevated levels of turbidity can be seen as a submerged plume into Lake Mead for about 1.5 kilometers until it disappears, as discussed in Section 15.4.2. Because Lake Mead is so deep, the settled out suspended solids make little difference to its depth. Areas near the mouth of Las Vegas Wash are now dry, not because they have filled in with settled out suspended solids, but because the water level has dropped 145 feet, exposing miles of former lakebed.

### 15.3.9 Conclusions about Suspended Solids and Turbidity

Below are the main conclusions for the evaluation of suspended solids and turbidity:

- There is a tight relationship between TSS concentrations and turbidity levels in the majority of samples.
- TSS concentrations and turbidity levels do not increase with increased flows, apparently because of the extensive channel lining, regional detention basins, and erosion control structures in the Las Vegas Valley.
- No additional monitoring stations are needed for the Las Vegas Valley. The Club at Sunrise location effectively monitors stormwater conditions upstream of the wastewater treatment plants, and the Rainbow Gardens location effectively monitors stormwater conditions for the whole of the Las Vegas Valley.
- TSS concentrations and turbidity levels are not consistently higher on the rising arm of the hydrograph as compared with peak flow and the falling arm.

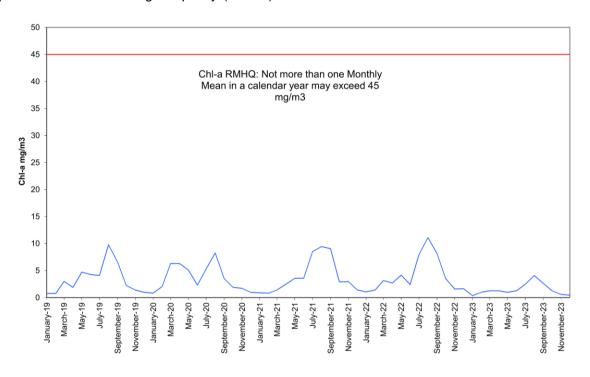
- TSS concentrations and turbidity levels do not substantially increase when there are long dry periods. The absence of an upwards trend may be explained either by the effectiveness of the Permittees' street sweeping program and debris cleanout, and/or because material buildup is not a significant source of solids in stormwater.
- The stormwater management program for the Las Vegas Valley is highly effective. Median TSS concentrations at Rainbow Gardens are therefore 1/20th of the background concentrations for the Mojave Basin and Range.
- TSS concentrations and turbidity levels from the Las Vegas Valley are not having a significant effect on lower Las Vegas Wash or Lake Mead.

# 15.4 Evaluation of Nutrient Data

This section describes the nutrient data collected as a part of the wet weather monitoring program and draws conclusions from the data.

### 15.4.1 Significance

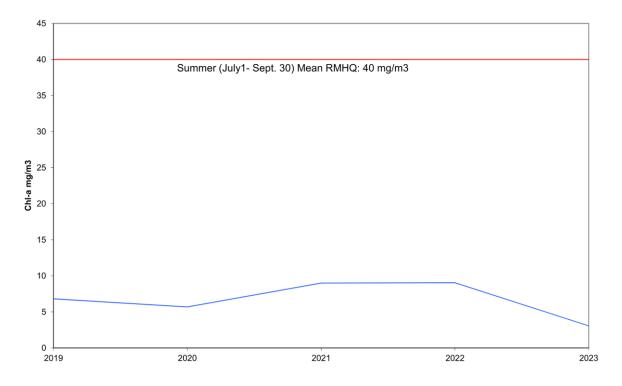
Nutrient concentrations in stormwater can be a concern if they produce nuisance algal blooms. Algae, which are microscopic plants, need a certain amount of time to assimilate nutrients and grow. Nutrients can increase algal growth in the same way that fertilizers increase plant growth in a garden.


Phosphorus and nitrogen are the nutrients that are most likely to affect algal growth and are the focus of most nutrient monitoring programs. The dissolved fraction of nutrients (orthophosphate and dissolved nitrogen) is of special interest because dissolved nutrients are more likely to be available to algae. Particulate fractions, especially those attached to sediment, are of less concern because they are buried in sediment as velocity decreases and solids fall out. In some places, release of nutrients from the sediment may be a concern, but not in Lake Mead. Most of Lake Mead is oligotrophic, which means that there are few nutrients available to grow algae, fish, or other aquatic life. Lake Mead is considered phosphorus-limited, therefore the focus of wet weather nutrient monitoring is orthophosphate.

# 15.4.2 Sensitivity of Lake Mead and Las Vegas Wash to Nutrients

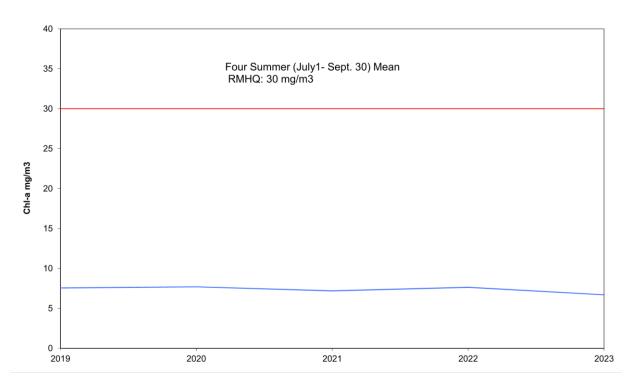
Algae are beneficial to fish production because fish eat algae or the zooplankton that eat algae. Algae can become a nuisance to recreation when they are so plentiful that they produce inappropriate turbidities. The State of Nevada has established water quality standards for Lake Mead that balance the benefit of algae to fish and the protection of recreation. Chlorophyll-a is the typical measurement of algae, which is used in Lake Mead's water quality standards. The Lake Mead chlorophyll-a standards balance the protection of fishing and recreation. There are six standards. The standard for inner Las Vegas Bay, which is used for fishing, is highest. The standards decrease as they move towards Boulder Basin, which is used for recreation.

Owing to concerns about algae in Lake Mead, a total maximum daily load (TMDL) for phosphorus was established in the 1980s and implemented in the 1990s. As a result, the wastewater dischargers all treat the wastewater to remove phosphorus to low levels. Since the TMDLs were implemented, algal levels have been at appropriate levels except for an aberrant algal bloom in 2001. Figures 15-28 to 15-33 show that for the past five years Lake Mead has been in compliance with its chlorophyll-a standards. Station 1.85 is located in the center of the channel in Lake Mead 1.85 miles from the


confluence with Las Vegas Wash. Station 2.7 is located 2.7 miles from the confluence and Station 3.5 is located 3.5 miles from the confluence. Chlorophyll-a data are compared to the applicable requirement to maintain higher quality (RMHQ).

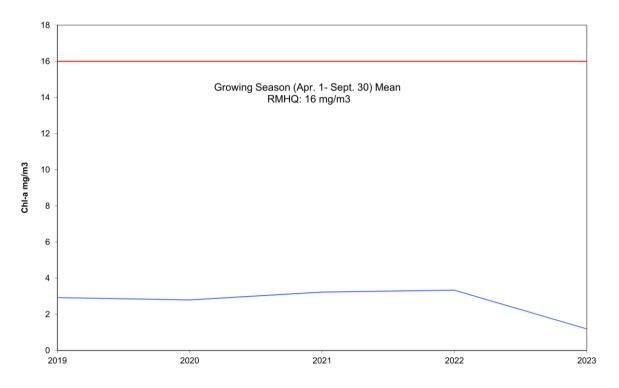


#### Figure 15-28. Lake Mead Station 1.85 chlorophyll-a monthly mean concentrations


Source: 2023 NDEP Lake Mead and LV Wash Ambient WQ Report

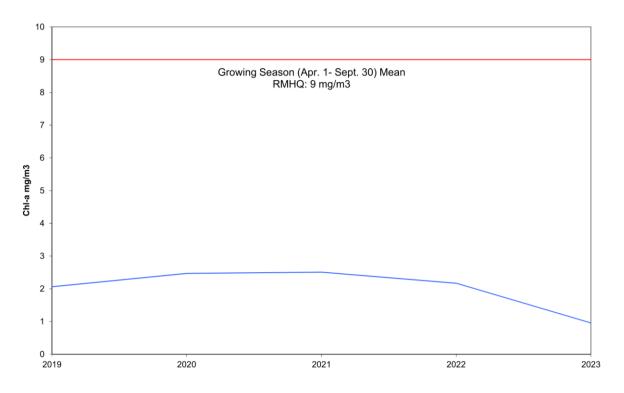





#### Figure 15-29. Lake Mead Station 1.85 chlorophyll-a summer mean concentrations

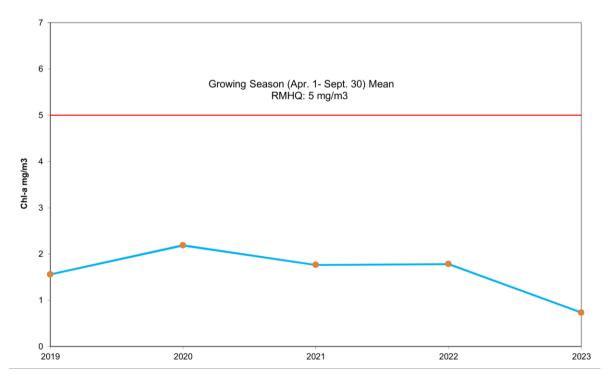
Source: 2023 NDEP Lake Mead and LV Wash Ambient WQ Report




### Figure 15-30. Lake Mead Station 1.85 chlorophyll-a four-summer mean concentrations

Source: 2023 NDEP Lake Mead and LV Wash Ambient WQ Report




### Figure 15-31. Lake Mead Station 2.7 chlorophyll-a growing season mean concentrations

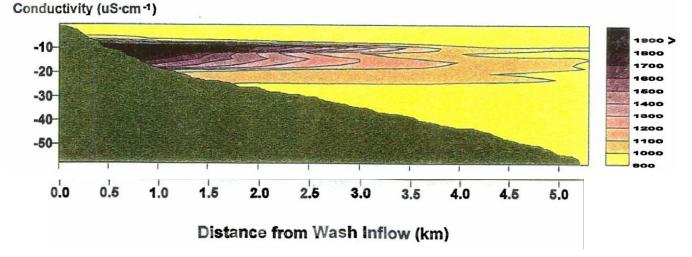
Source: 2023 NDEP Lake Mead and LV Wash Ambient WQ Report



### Figure 15-32. Lake Mead Station 3.5 chlorophyll-a growing season mean concentrations

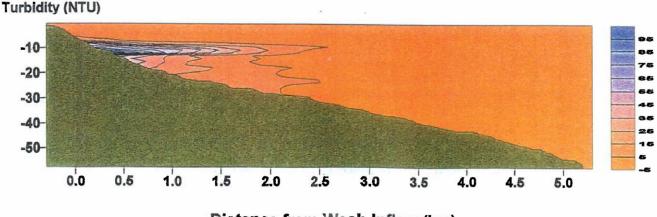
Source: 2023 NDEP Lake Mead and LV Wash Ambient WQ Report




#### Figure 15-33. Boulder Basin chlorophyll-a growing season mean concentrations

Source: 2023 NDEP Lake Mead and LV Wash Ambient WQ Report

These figures show that nutrients from all sources, including stormwater, do not result in excessive algae in Lake Mead. Because rain is infrequent in Las Vegas Valley, stormwater contributions of orthophosphate to Lake Mead are also infrequent.


In 1998, a special study was conducted of stormwater entering Lake Mead. Samples were taken the day of the storm and additional days thereafter. These data show that the stormwater entering Lake Mead plunged to a depth of about 10 meters below the surface and continued flowing out into the Lake at the 10-meter depth. The depth of the plunge of water coming down Las Vegas Wash and flowing into Lake Mead depends on the relative density of the waters, which is determined by temperature, total dissolved solids (TDS), and TSS. During the summer, Las Vegas Wash water is denser than the surface waters of Lake Mead, but less dense than the bottom waters. During the winter, Las Vegas Wash water is denser than all the water in Lake Mead, and water from the Las Vegas Wash flows along the bottom of Lake Mead.

TDS, which is measured in the laboratory, and conductivity, which can be measured with a probe in the field, are both measures of dissolved solids. Figure 15-34 shows a cross-section of the conductivity of Lake Mead on July 21, 1998, the day after a storm in Las Vegas Valley. On the left is the confluence with Las Vegas Wash. The negative numbers on the left scale represent the depth from surface in meters.



### Figure 15-34. Conductivity plume at Las Vegas Wash confluence with Lake Mead

Figure 15-34 shows a plume of water with elevated conductivity entering about 10 to 20 meters below the surface from Las Vegas Wash and continuing out into Lake Mead. Figure 15-35 shows a plume of water with elevated turbidity also entering about 10 to 20 meters below the surface and continuing out into Lake Mead, although not as far out into the lake. Figure 15-35 also shows that the turbidity plume sinks further towards the lake bottom than the conductivity plume.



Distance from Wash Inflow (km)

### Figure 15-35. Turbidity plume at Las Vegas Wash confluence with Lake Mead

These figures show that the July 1998 storm entered Lake Mead well below the surface and stayed well below the surface. Algae, like plants, are photosynthetic organisms and they need light to grow. Most algae live in the euphotic zone, where there is sufficient light. Algae do not grow well deep in Lake Mead because there is not enough light. Stormwater flowing through Lake Mead at 10 to 20 meters depth is too deep for algal use of any nutrients that may have been in the stormwater. Because there have not been any significant changes in the relative densities of Las Vegas Wash water and Lake Mead water since the 1990s, Figures 15-34 and 15-35 should be descriptive of current conditions.

The key conclusions from these figures are that chlorophyll-a concentrations in Lake Mead are at appropriate levels, and stormwater is not likely to have any effect on chlorophyll-a concentrations. Lake Mead is therefore not sensitive to nutrients from stormwater in Las Vegas Valley.



Las Vegas Wash is not sensitive to nutrients from any source. There has never been a nuisance algal bloom in Las Vegas Wash, perhaps because of the short time that nutrients spend in the Las Vegas Wash or the high velocity and turbulent flows. Because of the short duration of storms in Las Vegas Valley, any nutrients in stormwater are unlikely to affect the growth of algae in lower Las Vegas Wash.

# 15.4.3 Evaluation of Orthophosphate Data

Although orthophosphate in stormwater does not have any apparent effect on algae in Lake Mead, an analysis was performed to assess whether there is a buildup of orthophosphate in Las Vegas Valley that might be affected by stormwater management programs. If the orthophosphate in stormwater came from overuse of landscape fertilizer, then it might build up between storms. Figures 15-36 and 15-37 show that there is no apparent buildup. The regression lines are very slightly positive and very slightly negative. The orthophosphate in stormwater appears to come from a background source.

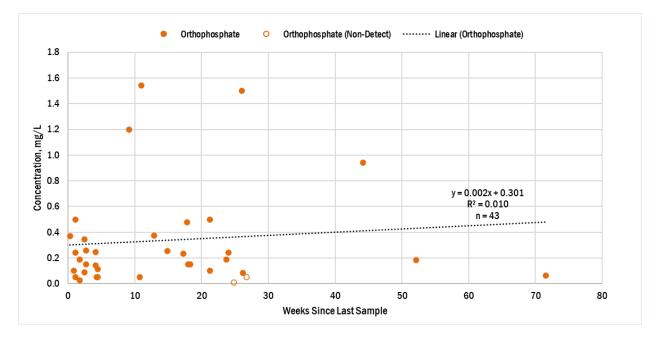
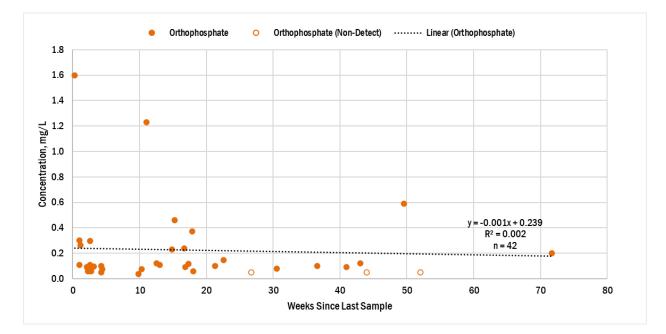




Figure 15-36. Club at Sunrise: Orthophosphate vs. weeks since last sample



### Figure 15-37. Rainbow Gardens: Orthophosphate vs. weeks since last sample

The pattern shown in Figure 15-37 is similar to the patterns for suspended solids and turbidity, as shown in Figures 15-24 and 15-25. This similarity suggests that orthophosphate in stormwater comes from widely distributed sources, rather than a few localized sources.

### 15.4.4 Conclusions About Nutrient Data

Below are the main conclusions for the evaluation of nutrients:

- Lake Mead and Las Vegas Wash are not sensitive to nutrients in stormwater.
- Orthophosphate concentrations do not substantially increase when there are long dry periods. The absence of an upwards trend may be explained either by the effectiveness of the Permittees' street sweeping program and debris cleanout, and/or because there is not an overuse of phosphate fertilizer.

# 15.5 Evaluation of Dissolved Metal Data

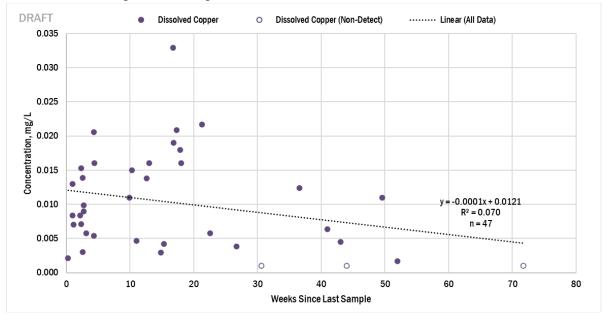
This section describes the dissolved metal data collected as a part of the wet weather monitoring program and draws conclusions from the data.

### 15.5.1 Significance

EPA reports that all metals can be toxic to fish at high concentrations, even those that are nutritionally essential for sustaining life in aquatic ecosystems in small amounts (such as copper and manganese). EPA has established recommended water quality criteria for dissolved metals, generally based on four-day and 30-day bioassays. A one-hour maximum has been established from the four-day bioassays, and a four-day maximum has been determined from the 30-day bioassays, thereby incorporating a great deal of conservatism. Because the toxicity of dissolved metals is generally dependent on hardness, the recommended criteria generally include a calculation that



adjusts the standard for hardness. Higher hardness results in lower toxicity. Nevada has incorporated these recommended water quality criteria into its water quality standards.


In Las Vegas Wash, there are no fish at the Club at Sunrise sampling location, and that location is not classified for fish. Fish in lower Las Vegas Wash are not exposed to stormwater for 30 days or even four days, because stormwater flows out of the Las Vegas Valley very quickly. In Lake Mead, fish are not likely to be exposed to stormwater from Las Vegas Valley for even one hour, because the stormwater is highly diluted and occupies only a small part of Lake Mead.

There have been no recent fish kills in lower Las Vegas Wash and no fish kills at any time that were attributed to stormwater. There have never been any fish kills in the part of Lake Mead affected by stormwater from Las Vegas Valley.

The three metals typically focused on for fish toxicity are dissolved copper, dissolved lead, and dissolved zinc, which are evaluated in the next three sections.

# 15.5.2 Evaluation of Dissolved Copper Data

Web searching suggests that copper dust from brake pads has been a source of copper in stormwater. However, EPA and the automotive industry have signed an agreement to reduce the use of copper in motor vehicle brake pads to <5 percent by weight in 2021 and 0.5 percent by 2025 (https://www.epa.gov/npdes/copper-free-brake-initiative). To ascertain whether copper from brake dust is building up during dry intervals between storms in Las Vegas Valley, concentrations were compared with the number of weeks since the last sampling event. The results are shown in Figure 15-38. In that figure, the linear regression line treats a non-detect as though they were detected at the detection limit. The water quality criteria for dissolved copper, dissolved lead, and dissolved zinc are derived from formulae based on the hardness of the ambient water. Typical hardness in the Las Vegas Wash is approximately 1,000 mg/L. The water quality criterion for dissolved copper for a hardness of 1,000 mg/L is 0.64 mg/L.



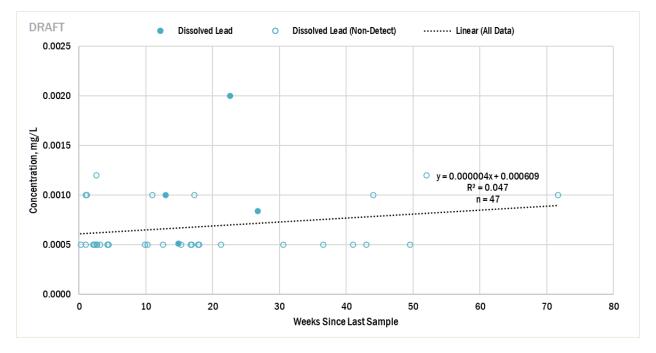
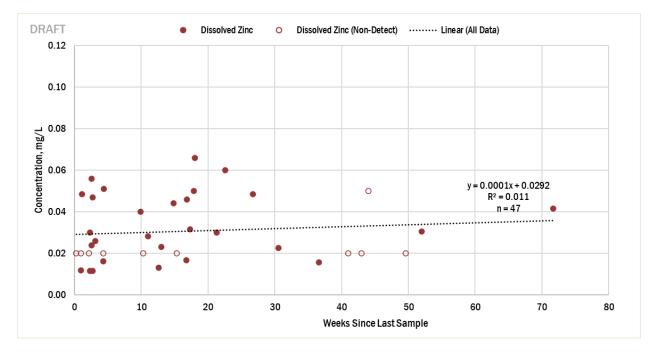

### Figure 15-38. Rainbow Gardens: dissolved copper vs. weeks since last sample

Figure 15-38 shows there is no evidence of a buildup of copper dust resulting in higher copper concentrations in stormwater. Concentrations are within water quality standards. Data has not been

shown for copper concentrations at the Club at Sunrise because of the absence of fish, but the results are similar.

# 15.5.3 Evaluation of Dissolved Lead Data

Web searching suggests that lead paint may be a source of lead in stormwater. Because so much of Las Vegas Valley is new construction, the great majority of paint postdates the ban on leaded paint. To ascertain whether lead is building up during dry intervals between storms in Las Vegas Valley, concentrations were compared with the number of weeks since the last sampling event. The results are shown in Figure 15-39. In that figure, the linear regression line treats a non-detect as though they were detected at the detection limit. The water quality criterion for dissolved lead for a hardness of 1,000 mg/L is 3.0 mg/L.




### Figure 15-39. Rainbow Gardens: dissolved lead vs. weeks since last sample

Figure 15-39 shows there is no evidence of a buildup of lead. In fact, most results are non-detect. Although the linear regression line appears to trend slightly upward, the equation shows that it has almost no slope. Concentrations are within water quality standards. Data has not been shown for lead concentrations at the Club at Sunrise because of the absence of fish, but the results are similar.

# 15.5.4 Evaluation of Dissolved Zinc Data

Web searching suggests that galvanized metal has been a source of zinc in stormwater, but there is very little exposed galvanized metal in the Las Vegas Valley. Web searching also suggests zinc in stormwater can come from tire wear and brake pad dust. To ascertain whether zinc is building up during dry intervals between storms in Las Vegas Valley, concentrations were compared with the number of weeks since the last sampling event. The results are shown in Figure 15-40. In that figure, the linear regression line treats a non-detect as though they were detected at the detection limit. The water quality criterion for dissolved zinc for a hardness of 1,000 mg/L is 0.34 mg/L.



### Figure 15-40. Rainbow Gardens: dissolved zinc vs. weeks since last sample

Figure 15-40 shows there is no evidence of a buildup of zinc. Although the linear regression line appears to trend slightly upward, the equation shows that it has almost no slope. Concentrations are within water quality standards. Data has not been shown for zinc concentrations at the Club at Sunrise because of the absence of fish, but the results are similar.

The pattern shown in Figures 15-38 through 15-40 is similar to the patterns for suspended solids, turbidity, and dissolved orthophosphate, as shown in Figures 15-24, 15-25, and 15-37. This similarity suggests that dissolved metals in stormwater come from widely distributed sources, rather than a few localized sources.

## 15.5.5 Conclusions About Dissolved Metals Data

Below are the main conclusions for the evaluation of dissolved metals:

- Dissolved metals do not substantially increase when there are long dry periods. The absence of an upwards trend may be explained either by the effectiveness of the Permittees' street sweeping program and debris cleanout, and/or because material buildup is not a significant source of dissolved metals in stormwater.
- Dissolved metals in stormwater come from widely distributed sources, rather than a few localized sources.

# 15.6 Evaluation of Effectiveness of Wet-Weather Monitoring Program

This section describes the evaluation and effectiveness of the wet weather monitoring program in the Las Vegas Valley.

# 15.6.1 Number and Location of Monitoring Stations

As explained in Section 15.3.4, no additional monitoring stations are needed for the Las Vegas Valley. The Club at Sunrise location effectively monitors stormwater conditions upstream of the wastewater treatment plants, and the Rainbow Gardens location effectively monitors stormwater conditions for the whole of the Las Vegas Valley. The similarity in results for these two stations implies that stormwater quality is generally similar across Las Vegas Valley.

## 15.6.2 Sufficiency of Data

The amount of wet weather monitoring data is limited by the amount of rainfall. Over the past 10 or more years, all storms that generated sufficient rainfall have been monitored. A substantial amount of wet weather data has been collected, more than enough data to inform the issues considered in this evaluation.

## 15.6.3 Representativeness of Samples

Data from the Club at Sunrise reflect stormwater quality in the areas upstream of that location, which are drained by Upper Las Vegas Wash, Las Vegas Creek, and Flamingo Wash. Data from Rainbow Gardens reflect stormwater quality from these areas and in addition, stormwater from Sloan Channel, Pittman Wash, Duck Creek, and the C-1 Channel, as well as highly treated discharges from the wastewater treatment plants. The similarity in data from the Club at Sunrise to the data from Rainbow Gardens implies that stormwater quality is generally uniform throughout Las Vegas Valley.

Because stormwater velocity and energy are highest at peak flow, concentrations conceptually could be higher at peak flow. As noted in Section 15.3.5, concentrations conceptually may also be higher during a first flush, although reports have been inconsistent. Samples taken at the end of the storm conceptually should have lower concentrations because velocities have decreased and materials have settled out.

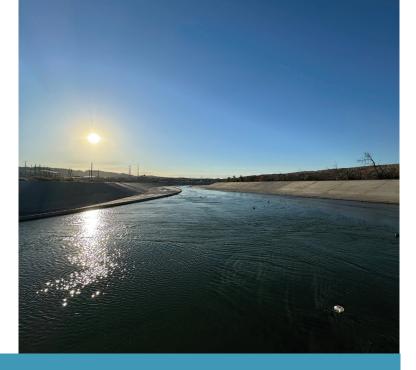
Stormwater sampling in Las Vegas Valley tends to be near the peak, as explained in Section 15.3.5. There are no samples taken at or near the extreme end of a storm, when concentrations are likely to be lower. As a result, stormwater samples in Las Vegas Valley may not be representative of the entire storm. If they are unrepresentative, they are likely to be higher than the true values for the storm, thereby providing some conservatism to the data. Samples are composited equally by time rather than being adjusted for flow, which is necessary for practical purposes. This compositing practice may also produce some unrepresentativeness.

## 15.6.4 Program Effectiveness

Because of the sufficiency of the data and the probable conservativeness of the samples, the wet weather monitoring program can be used to evaluate the effectiveness of the stormwater management program. The data show that turbidity and suspended solids are far lower than background levels, that nutrients in stormwater are not causing algal problems, and that dissolved metals are not harming fish.

### 15.6.5 Conclusions

Below are the main conclusions for the evaluation of wet weather characterization data:


• There are an appropriate number of monitoring stations and they are appropriately located.

- Although the amount of data is limited by the number of sampleable storms, the amount of data collected is sufficient to inform the issues considered in this evaluation.
- Samples collected are representative of conditions in Las Vegas Valley. Samples may not perfectly represent the entirety of all storms, because the trailing end of storms are not sampled. The trailing end of storms are likely to contain lower concentrations than the sampled portions.
- The stormwater management program for the Las Vegas Valley is highly effective. Turbidity and suspended solids are far lower than background levels, that nutrients in stormwater are not causing algal problems, and that dissolved metals are not harming fish.

# 15.7 References

Simon et al., "Suspended-sediment transport rates at the 1.5-year recurrence interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge?," Geomorphology, 2004, 243-262.

"The Economic Impact of Construction in the United States and Nevada," Associated General Contractors (AGC) of America, September 2023. https://www.agc.org/sites/default/files/users/user21902/NV- US%20construction%20fact%20sheet\_92023.pdf



# Section 16

Conclusion

**16** CONCLUSION



# 16 Conclusion

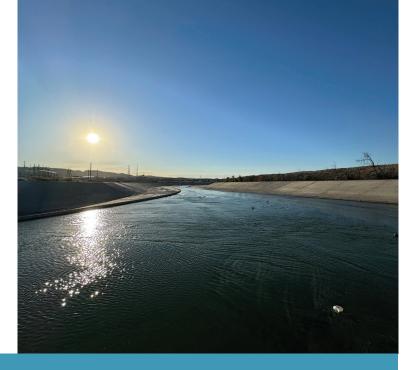
The Permittees prepared this Annual Report for the 2023-2024 MS4 permit year to report to NDEP on the status of the MS4 program and to highlight compliance with the permit and current SWMP. Annual Report requirements in the MS4 permit were also satisfied as described below and all program BMP goals were achieved.

- B.6.3.3.1: Status of compliance with permit conditions This is discussed in each Annual Report section. All permit conditions were met.
- B.6.3.3.2: Appropriateness of BMPs Current BMPs remain appropriate. No significant additions are proposed.
- B.6.3.3.3: Progress towards reducing discharges to the maximum extent practicable (MEP) The Permittees believe that continued implementation of current BMP programs is meeting the MEP goal given the unique conditions in the Las Vegas Valley.
- B.6.3.3.4: Achievement of measurable goals This is discussed in each Annual Report section. All permit conditions were met.

B.6.3.3.5: Results of information analysis – Wet weather water quality remained largely consistent with data collected historically. One of the wet weather samples at the Club at Sunrise and one at the Rainbow Gardens showed higher concentration than WQS for iron. Iron is a common and natural constituent of soil.

There were no significant changes to the impact of stormwater runoff on attainment of water quality standards.

- B.6.3.3.6: Summary of stormwater activities planned for next permit cycle The Permittees intend to continue all current BMP programs. While no new programs are anticipated, possible improvements to current programs will be evaluated.
- B.6.3.3.7: Changes to the SWMP A Draft SWMP update is being submitted.
- B.6.3.3.8: Reliance on another governmental agency to satisfy permit obligations Permittees rely on other governmental agencies (e.g., SNWA, SNHD) to perform activities for specific BMPs, but not to satisfy overall permit obligations.
- B.6.3.3.9: Estimated reductions in loadings of pollutants to surface and ground water due to MS4 program – Permittees have not found a reliable, defensible method to quantify reductions in pollutant loadings attributable to the BMPs in their MS4 program. This is not currently being reported. However, data show that population and land development have increased dramatically in the Las Vegas Valley since the MS4 program inception in 1991, without a commensurate increase in stormwater pollutant concentrations. This suggests that BMPs in the MS4 program have been effective in offsetting pollutant loading increases that could have occurred due to development.
- B.6.3.3.10: Summary of inspections More than 850 industrial facility inspections and more than 5,000 construction site inspections were completed by the Permittees during the permit year. Inspections are documented in Section 12 and Section 13 of this Annual Report.




-)**?** 

 B.6.3.3.11: Annual expenditures and budget for the following year – This information is provided in Section 14 of this Annual Report. Annual program expenditures for the 2023-2024 MS4 permit year were approximately \$215 million for all Permittees combined. The budget for the 2024-2025 MS4 permit year is approximately \$214 million.



# Appendices



# Appendix A-1 A-1: Historic Wet Weather Data

# Notes for Wet Weather Monitoring Data, 1992-2024

Refer to these notes for all set of databases

1) In computing median values, concentrations below detection limits were assumed to equal the detection limit.

2) In computing average values, concentrations less than the detection limit were assumed to be 1/2 the detection limit.

3) NA = Not Available

4) Total Nitrogen =  $TKN + NO_3 + NO_2$ . If TKN,  $NO_3$ , or  $NO_2$  are below the detection limit, the concentration was assumed to be equal to the detection limit.

5) Insitu pH used for 3/25/94 Western Trib.

6) Phenol values are Lab measurements when both lab and in-situ measurements are available.

# (a) VOC detected is Acetone

- (b) VOC detected is 2-Butanone
- (c) Pesticide detected is Atrazine
- (d) VOC detected is Chloroform
- (e) VOC detected is Trichloromethane
- (f) Herbicide detected is MCCP
- (g) SOC detected is Butylbenzylphthalate
- (h) SOC detected is Caffeine
- (i) SOC detected is Di-(2-Ethylhexyl)adipate
- (j) SOC detected is Di-n-Butylphthalate
- (k) SOC detected is Phenanthrene
- (I) SOC detected is Pyrene
- (m) SOC detected is Simazine
- (n) SOC detected is Dimethylphthalate
- (o) SOC detected is Diethylphthalate
- (p) SOC detected is Alachlor
- (q) SOC detected is Benzopyrene
- (s) SOC detected is Metolalchlor
- (t) SOC detected is Propachlor
- (u) SOC detected is Benzo(g,h,I)Perylene
- (v) SOC detected is Benzo(k)Fluoranthene
- (w) Denotes grab sample taken from bottle X
- (x) SOC detected is Di(2-Ethylhexyl)phthalate
- (y) Denotes grab sample taken from flow stream while bottle X is filling
- (z) SOC detected is Heptachlor
- (aa) SOC detected is Lindane
- (bb) SOC detected is Metribuzin
- (cc) VOC detected is Chlorodibromomethane
- (dd) VOC detected is Bromodichloromethane
- (ee) VOC detected is Total THM
- (ff) VOCs detected is Carbon Disulfide
- (gg) Pesticides detected is Glyoxal

(hh) Herbicide detected is 2,4-D (ii) Pesticide detected is Chlorpyrifos (Dursban) (jj) Pesticide detected is Metachlor (kk) Pesticide detected is Malathion (II) Pesticide detected is Prometon (nn) SOC detected is Fluoranthene (oo) Pesticide detected is Dieldrin (pp) VOC detected is Benzenaldehyde (qq) VOC detected is Acetaldehyde (ss) VOC detected is Butanal (tt) VOC detected is Decanol (uu) Herbicide detected is 2,4-DB (vv) VOC detected is Formaldehyde (ww) Pesticide detected is Diazinone (xx) Pesticide detected is Dicamba (yy) VOC detected is p-Dichloropropane (zz) SOC detected is Methyl Glyoxal (aaa) VOC detected is Octanal (bbb) VOC detected is Propanal (ccc) Herbicide detected is Pentachlorophenol (ddd) VOC detected is Toluene (eee) VOC detected is Dichloroacetonitrile (fff) VOC detected is Dibromochloromethane (ggg) VOC detected is Pentanal (hhh) VOC Heptanal (iii) VOC Hexanal (jjj) VOC Dibromochloropropane (kkk) Pesticide Duiron (III) Herbicide 2,4,5-T (mmm) SOC Benzoic Acid (nnn) VOC Naphthalene (ooo) SOC Dimethylphenol (ppp) VOC 2-methylphenol (qqq) VOC 4-methylphenol (rrr) Herbicide Picloram (sss) SOC Benzene (ttt) Pesticide Alpha-bhc (uuu) Pesticide Beta-bhc (vvv) Pesticide delta-bhc (www) SOC Methyl isobutyl ketone (xxx) Herbicide Bentazon (yyy) VOC Cyclohexanone (zzz) VOC Benzyl alcohol (aaaa) Phenol (bbbb) Benezene (cccc) Herbicide Benzoic Acid (dddd) Pesticide Methyl Glyoxal (eeee) VOC Nonanal

1992-2024 Wet Weather Data

| Location              | Date                             | Q<br>cfs   | Temp<br>Deg. C       | Oil &<br>Grease<br>mg/L | TSS<br>mg/L         | TDS<br>mg/L        | Specific<br>Conductance<br>umho/cm | Lab<br>pH<br>units   | Surfactants<br>MBAS<br>mg/L | Ortho-<br>Phosphate<br>mg/L | Total<br>Phosphorous<br>mg/L | NO3-N<br>mg/L       | NO-2<br>mg/L             | NH3-N<br>mg/L        | TKN<br>mg/L          | Total<br>Nitrogen<br>mg/L |
|-----------------------|----------------------------------|------------|----------------------|-------------------------|---------------------|--------------------|------------------------------------|----------------------|-----------------------------|-----------------------------|------------------------------|---------------------|--------------------------|----------------------|----------------------|---------------------------|
|                       | 04/02/97                         | 015        | 12.6                 | < 3                     | 480                 | 1.060              | 1.549                              | 7.1                  | 0.63                        | 0.55                        | 0.91                         | 3.30                | 0                        | 1.30                 | 8.50                 | 11.80                     |
|                       | 07/28/97                         |            | 26.6                 | 1,180                   | 400                 | 1,000              | 1,092                              | 7.6                  | 1.34                        | 0.04                        | 0.52                         | 2.10                |                          | 0.80                 | 3.90                 | 6.00                      |
|                       | 02/04/98                         |            |                      | < 3                     | 2,590               | 980                | -,                                 | 7.7                  | 0.60                        | 0.17                        | 1.97                         | 0.63                |                          | 0.70                 | 7.30                 | 7.93                      |
|                       | 02/24/98                         |            | 12.0                 |                         | 5,580               | 540                |                                    | 7.9                  | < 0.50                      | 0.09                        | 1.46                         | 1.00                |                          | 0.20                 | < 1.00               | 2.00                      |
| -                     | 04/24/99                         | 112        |                      | 4                       | 1,240               | 1,000              |                                    |                      |                             |                             | 0.93                         | 2.80                |                          | 0.50                 | 7.45                 | 10.25                     |
| -                     | 04/30/99                         | 550        |                      | < 3                     | 1,870               | 440                |                                    |                      |                             |                             | 1.83                         | 1.90                |                          | 0.78                 | 8.73                 | 10.63                     |
|                       | 02/21/00                         |            |                      | 5                       | 1,910               | 100                |                                    |                      |                             |                             | 2.10                         | 0.64                |                          | 0.18                 | 3.20                 | 3.84                      |
|                       | 10/23/00                         | 312        |                      | 5                       | 1,390               | 2,430              |                                    |                      |                             |                             | 1.20                         | 3.48                |                          | 0.60                 | 7.40                 | 10.88                     |
|                       | 02/26/01                         | 400        |                      | < 3                     | 2,940               | 1,250              |                                    |                      |                             |                             | 1.70                         | 2.64                |                          | 0.40                 | 4.90                 | 7.54                      |
|                       | 11/24/01                         | 75         |                      | 15                      | 630                 | 1,590              |                                    |                      |                             |                             | 0.86                         | 2.00                |                          | 1.61                 | 7.80                 | 9.80                      |
|                       | 09/11/02                         | 83         |                      | < 3                     | 110                 | 1,300              | 1,570                              | 7.1                  | 2.18                        |                             | 0.49                         | 3.90                | < 2.50                   | 1.13                 | 5.40                 | 11.80                     |
|                       | 02/12/03                         | 400        |                      | 5                       | 5,980               | 1,180              | 819                                | 7.7                  | < 0.05                      | 0.13                        | 2.40                         | 1.50                | < 0.20                   |                      | 4.70                 | 6.40                      |
|                       | 02/25/03                         | 775        |                      | 8                       |                     |                    |                                    |                      |                             |                             | 0.44                         |                     |                          | 0.38                 | 3.00                 | 3.00                      |
|                       | 07/19/03                         |            |                      |                         | 500                 | 1,330              |                                    |                      | 0.72                        |                             |                              | 0.63                | 1.20                     |                      | 7.70                 | 9.53                      |
| -                     | 02/21/04                         |            |                      | < 5                     | 340                 | 660                | 274                                | 7.5                  | 0.48                        |                             | 0.42                         | 1.80                | < 0.20                   |                      | 2.90                 | 4.90                      |
| -                     | 11/09/04                         |            |                      |                         | 1 830               | 1,500              | 1,730                              | 6.7                  | < 0.05                      |                             | 0.77                         | 165                 | < 0.10                   |                      | 2.50                 | 167.60                    |
| -                     | 01/04/05                         |            |                      | < 5<br>< 5              | 1,730<br>1,160      | 290                | 428<br>535                         | 7.9                  | < 0.05<br>0.12              | 0.22                        | 1.20                         | 0.70                | < 0.10<br>6.50           |                      | 4.10                 | 0.80                      |
| -                     | 07/24/05<br>10/05/06             |            |                      | < 5                     | 1,160               | 390<br>298         | 535<br>446                         | 7.6                  | 0.12                        | 0.04                        | 0.77                         | 1.50                | < 0.20                   | l'                   | 4.10<br>2.00         | 3.30                      |
| -                     | 01/05/08                         |            |                      |                         | 1,520               | 536                | 846                                | 7.6                  | 0.09                        | 0.19                        | 3.30                         | 1.10                | < 0.20                   |                      | 12.00                | 14.10                     |
| ŀ                     | 01/05/08                         |            |                      | 7                       | 5.810               | 1.450              | 1.890                              | 7.6                  | 0.81                        | 0.00                        | 3.30                         | < 5.00              | < 5.00                   | <b>├</b> ─────       | 26.00                | 14.10<br>36.00            |
| F                     | 11/26/08                         |            |                      | 4                       | 1,200               | 1,430              | 1,890                              | 7.4                  | 0.19                        | 0.51                        | 1.80                         | 2.80                | < 0.50                   | 1                    | 9.90                 | 13.20                     |
| l -                   | 12/17/08                         |            |                      | 4                       | 26                  | 294                | 439                                | 7.4                  | 0.19                        | 0.31                        | 0.41                         | 0.76                | 0.10                     | H                    | 2.00                 | 2.86                      |
| F                     | 02/07/09                         |            |                      | 5                       | 18                  | 726                | 1,020                              | 7.6                  | 0.07                        | 0.25                        | 1.80                         | 1.60                | < 0.20                   | 1                    | 8.60                 | 10.40                     |
| F                     | 07/22/09                         |            |                      | 14                      | 500                 | 1,300              | 1,700                              | 7.4                  | 0.74                        |                             | 1.60                         | < 0.50              | < 0.25                   | 1                    | 14.00                | 14.75                     |
| F                     | 01/20/10                         |            |                      | 5                       | 3,400               | 610                | 870                                | 7.7                  | 0.23                        | 1.50                        | 2.10                         | 1.70                | < 0.13                   | 1                    | 7.90                 | 9.73                      |
| -                     | 02/06/10                         |            |                      | 6                       | 620                 | 230                | 340                                | 7.9                  | 0.09                        | 0.09                        | 0.59                         | 0.82                | 0.09                     |                      | 2.50                 | 3.41                      |
|                       | 04/22/10                         |            |                      | 3                       | 1,000               | 840                |                                    |                      | 0.46                        | 0.05                        | 0.80                         | 1.70                |                          |                      | 4.10                 | 5.80                      |
|                       | 10/17/10                         |            |                      | < 5                     | 230                 | 1,100              | 1,500                              | 7.3                  | 1.00                        | 0.05                        | 0.67                         | < 0.25              | < 0.25                   |                      | 7.40                 | 7.90                      |
|                       | 12/20/10                         |            |                      | < 5                     | 1,700               | 1,300              | 1,900                              | 7.9                  | 0.46                        | 1.20                        | 1.80                         | 2.70                | < 0.13                   |                      | 6.80                 | 9.63                      |
|                       | 12/22/10                         |            |                      | < 5                     | 1,600               | 130                |                                    | 8.2                  | 0.09                        | 0.37                        | 0.74                         | 0.54                |                          | 0.09                 | 1.60                 | 2.14                      |
| _                     | 03/21/11                         |            |                      | < 5                     | 750                 | 2,500              | 3,000                              | 7.5                  | 0.45                        | 0.05                        | 0.82                         | 3.20                | < 0.13                   |                      | 6.00                 | 9.33                      |
| _                     | 09/11/11                         |            |                      | < 5                     | 7,600               | 1,100              | 1,300                              | 7.4                  | < 0.05                      | < 0.01                      | 3.00                         | 1.40                | 1.10                     |                      | 9.30                 | 11.80                     |
| -                     | 10/03/11                         |            |                      | < 5                     | 4,700               | 700                | 970                                | 7.5                  | 0.07                        | 0.04                        | 1.40                         | 1.30                | < 0.25                   |                      | 9.40                 | 10.95                     |
| -                     | 03/17/12<br>07/23/12             |            |                      | 5                       | 1,600<br>970        | 1,100              | 1,500                              | 7.4                  | < 0.16<br>< 0.05            | 0.19                        | 1.20<br>1.20                 | < 0.25              | 0.51<br>0.49             | l'                   | 7.30<br>0.85         | 8.06<br>2.84              |
| Las Vegas Wash        | 07/31/12                         |            |                      | < 5                     | 1,400               | 870<br>440         | 1,200                              | 7.6<br>7.8           | < 0.05                      | 0.15                        | 0.90                         | 1.50                | < 0.25                   |                      | < 0.20               | 1.65                      |
| @ The Club at         | 08/12/12                         |            |                      | < 5                     | 1,400               | 660                | 920                                | 7.3                  | 0.60                        | 0.19                        | 0.50                         | < 0.25              | 1.10                     |                      | 3.80                 | 5.15                      |
| Sunrise (Formerly     | 08/12/12                         |            |                      | < 5                     | 4,500               | 470                | NA                                 | 7.5                  | < 0.05                      | 0.10                        | 2.00                         | 1.80                | 0.11                     |                      | 4.50                 | 6.41                      |
| known as Desert       | 08/30/12                         |            |                      | < 5                     | 4,100               | 920                | NA                                 | 7.7                  | < 0.05                      | 0.03                        | 3.10                         | 2.00                | < 0.13                   |                      | 7.50                 | 9.63                      |
| Rose Golf Course)     | 01/26/13                         |            |                      | < 5                     | 1,900               | 360                | NA                                 | 7.6                  | < 0.05                      | 0.50                        | 1.50                         | 0.90                | < 0.25                   |                      | 4.70                 | 5.85                      |
| (USGS)                | 07/19/13                         |            |                      | < 5                     | 8,350               | 590                | 763                                | 7.5                  | 0.63                        | 0.16                        | 0.64                         | < 0.10              | < 0.10                   | 0.65                 | 22.10                | 21.50                     |
| -                     | 08/18/13                         |            |                      | 12                      | 1,840               | 590                | 657                                | 7.6                  | 1.20                        | 0.05                        | 0.74                         | 0.14                | < 0.10                   | 0.25                 | 19.70                | 20.00                     |
|                       | 08/25/13                         |            |                      | < 5                     | 4,090               | NA                 | NA                                 | 7.9                  | NA                          | 0.09                        | 1.47                         | 1.25                | < 0.10                   | 0.45                 | 6.25                 | 7.60                      |
|                       | 11/21/13                         |            |                      | < 5                     | 555                 | 105                | 698                                | 7.9                  | 0.76                        | 0.21                        | 1.32                         | 1.30                | < 0.10                   | 1.55                 | 2.08                 | 3.63                      |
|                       | 08/04/14<br>08/20/14<br>09/08/14 |            |                      |                         | Samples not Tal     | ken due to Las     | Vegas Channel Im                   | provements, Sl       | oan Channel to Bo           | nanza Road and H            | Flamingo Wash be             | elow Nellis Boulev  | vard Improvement l       | Project              |                      |                           |
| ŀ                     | 09/08/14                         |            |                      | 9                       | 305                 | 445                | 661                                | 7.8                  | 0.46                        | 0.48                        | 0.57                         | 1.77                | < 0.10                   | 0.77                 | 1.54                 | 0.77                      |
| ŀ                     | 01/30/15                         |            |                      | 6                       | 165                 | 265                | NA                                 | 7.8                  | 0.56                        | 0.15                        | 0.17                         | 1.19                | < 0.10                   | 0.36                 | 0.67                 | 1.96                      |
| F                     | 03/02/15                         |            |                      | 5                       | 175                 | 375                | 567                                | 7.3                  | 0.50                        | 0.11                        | 0.33                         | 1.25                | < 0.10                   | 0.36                 | 0.91                 | 0.55                      |
| F                     | 07/06/15                         |            |                      | 6                       | 564                 | 416                | 578                                | 7.1                  | 0.37                        | 0.15                        | 0.55                         | < 0.10              | 0.26                     | 0.18                 | 1.47                 | 1.29                      |
| F                     | 10/05/15                         |            |                      | < 5                     | 7,450               | 450                | NA                                 | 6.9                  | 0.24                        | 0.11                        | 2.18                         | 3.41                | < 0.10                   | 0.81                 | 28.00                | NA                        |
| Ē                     | 04/09/16                         |            |                      | < 5                     | 850                 | 235                | 215                                | 7.3                  | 0.24                        | 0.10                        | 0.34                         | 0.74                | < 0.10                   | 0.35                 | 2.49                 | 2.14                      |
| Γ                     | 04/28/16                         |            |                      | 6                       | 1,360               | 525                | NA                                 | 7.6                  | 0.42                        | 0.26                        | 2.93                         | 1.10                | < 0.10                   | < 0.10               | 2.91                 | NA                        |
|                       | 05/06/16                         |            |                      | < 5                     | 410                 | 510                | NA                                 | 7.4                  | 0.10                        | 0.24                        | 1.37                         | 1.52                | < 0.10                   | 0.55                 | 3.81                 | NA                        |
|                       | 08/04/16                         |            |                      | 5                       | 360                 | 165                | NA                                 | 7.8                  | 0.29                        | 0.37                        | 0.83                         | 1.73                | < 0.10                   | 0.57                 | 3.27                 | 2.70                      |
|                       | 08/23/16                         |            |                      | < 5                     | 4,340               | 455                | NA                                 | 7.4                  | 0.23                        | N/A                         | N/A                          | 1.69                | < 0.10                   | 0.37                 | 5.61                 | 5.24                      |
| _                     | 12/22/16                         |            |                      | < 5                     | 310                 | 1,820              | NA                                 | 7.7                  | 0.64                        | 0.24                        | 0.57                         | 1.34                | < 0.10                   | 0.64                 | 3.54                 | 2.90                      |
| _                     | 01/20/17                         |            |                      | < 5                     | 522                 | 230                |                                    | 8.6                  | 0.89                        | 0.25                        | 0.60                         | 0.57                | < 0.10                   | 0.25                 | 2.04                 | 4                         |
| Ļ                     | 02/18/17                         |            |                      | < 5                     | 248                 | 1,260              | N7/4                               | 6.8                  | 0.21                        | 0.14                        | 0.39                         | 10.20               | < 0.10                   | < 0.10               | < 1.00               | 4.07                      |
| -                     | 07/17/17<br>07/25/17             |            |                      | 6.6<br>2.4              | 444<br>2.740        | 765                | N/A                                | 7.06                 | 1.40<br>0.48                | 0.10                        | 0.93                         | 0.14                | < 0.10                   | 0.38                 | 5.22                 | 4.84                      |
| F                     | 01/09/18                         |            |                      | 7.1                     | 665                 | 255                | ~                                  | 7.87                 | < 0.07                      | 0.30                        | 0.91                         | 1.08                | < 0.10                   | 1.28                 | 2.43                 | 1.15                      |
| F                     | 07/15/18                         |            |                      | < 5.0                   | 185                 | 365                | ŇĂ                                 | 7.20                 | < 0.10                      | < 0.05                      | 0.45                         | 1.36                | < 0.10                   | 0.62                 | 2.43                 | 2.18                      |
| -                     | 01/14/19                         |            |                      | 6.4                     | 455                 | 220                | NA                                 | 7.26                 | 0.60                        | 0.09                        | 3.58                         | 0.61                | < 0.10                   | 1.10                 | 2.68                 | 1.58                      |
| F                     | 02/14/19                         |            |                      | 9.3                     | 440                 | 115                | NA                                 | 7.59                 | 0.30                        | < 0.05                      | 0.47                         | 0.40                | < 0.10                   | 0.48                 | 3.11                 | 2.63                      |
| Γ                     | 11/20/19                         |            |                      | < 5.0                   | 120                 | 625                | NA                                 | 7.40                 | 0.85                        | 0.38                        | 1.66                         | 1.56                | < 0.10                   | 0.99                 | 6.10                 | 5.11                      |
|                       | 11/28/19                         |            |                      | < 5.0                   | 410                 | 180                | NA                                 | 5.92                 | 0.28                        | 0.48                        | 0.58                         | 0.58                | < 0.10                   | 0.90                 | 2.30                 | 1.40                      |
|                       | 03/11/20                         |            |                      | < 5.0                   | 204                 | 160                | NA                                 | 7.83                 | 0.36                        | 0.25                        | 0.42                         | 0.41                | < 0.10                   | 0.34                 | 1.55                 | 1.21                      |
|                       | 07/25/21                         |            | NA                   | < 5.0                   | 2,800               | 485                | NA                                 | 7.20                 | 0.25                        | 0.06                        | 2.36                         | 6.19                | < 0.20                   | 1.25                 | 6.15                 | 4.90                      |
|                       | 07/25/22                         |            | NA                   | 10.3                    | 825                 | 456                | NA                                 | 7.41                 | 1.53                        | 0.18                        | 1.57                         | < 0.10              | < 0.10                   | 1.74                 | 6.99                 | 5.25                      |
|                       | 08/11/22                         |            | NA                   | 7.3                     | 860                 | 230                | NA                                 | 7.78                 | 0.91                        | 0.35                        | 1.42                         | 1.55                | < 0.10                   | 1.41                 | 5.99                 | 4.58                      |
| Ļ                     |                                  |            | 22.3                 | 3.6                     | 560                 | 250                | NA                                 | 7.60                 | 0.81                        | 0.94                        | 1.42                         | 1.27                | 0.11                     | 1.44                 | 6.12                 | 4.68                      |
|                       | 06/16/23                         |            | 07.0                 | 10.0                    | 0.17                | 6.2                |                                    |                      |                             |                             |                              |                     |                          |                      |                      |                           |
| -                     | 09/01/23                         | 251        | 27.3                 | 10.0                    | 867                 | 93                 | NA<br>870                          | 8.18                 | 0.31                        | 1.54                        | 2.04                         | 1.05                | < 0.10                   | 0.64                 | 3.66                 | 3.02                      |
| -<br>-<br>-<br>-<br>- |                                  | 356<br>775 | 27.3<br>22.3<br>27.3 | 10.0<br>< 5<br>1,180    | 867<br>860<br>8,350 | 93<br>531<br>2,500 | NA<br>870<br>3.000                 | 8.18<br>7.58<br>8.57 | 0.31<br>0.34<br>2.18        | 1.54<br>0.18<br>1.54        | 2.04<br>1.07<br>3.90         | 1.05<br>1.30<br>165 | < 0.10<br>< 0.10<br>6.50 | 0.64<br>0.59<br>1.74 | 3.66<br>4.50<br>28.0 | 3.02<br>5.24<br>168       |

|                             |                                  | Copper           | Dissolved          | Chromium         | Lead               | Dissolved            | Mercury              | Cadmium                | Zinc         | Dissolved        | Silver                | Nickel           | Selenium             | Dissolved            |
|-----------------------------|----------------------------------|------------------|--------------------|------------------|--------------------|----------------------|----------------------|------------------------|--------------|------------------|-----------------------|------------------|----------------------|----------------------|
| Location                    | Date                             | mg/L             | Copper<br>mg/L     | mg/L             | mg/L               | Lead<br>mg/L         | mg/L                 | mg/L                   | mg/L         | Zinc<br>mg/L     | mg/L                  | mg/L             | mg/L                 | Selenium<br>mg/L     |
|                             | 04/02/97                         | 0.024            | ing/1              | ing/12           | < 0.100            | ing/15               | ing/12               | ing/L                  | 0.18         | iiig/E           | ing/12                | ing/E            |                      | ing/L                |
| F                           | 07/28/97                         | 0.023            |                    |                  | < 0.100            |                      |                      |                        | 0.15         |                  |                       |                  | 1                    |                      |
|                             | 02/04/98                         | 0.065            |                    |                  | 0.180              |                      |                      |                        | 0.55         |                  |                       |                  |                      |                      |
| -                           | 02/24/98                         | < 0.010          | 0.010              |                  | 0.180              | 0.1000               |                      |                        | 0.32         | < 0.02           |                       |                  | 4                    |                      |
| -                           | 04/24/99<br>04/30/99             | < 0.010<br>0.130 | < 0.010<br>< 0.010 |                  | < 0.100<br>< 0.100 | < 0.1000             |                      |                        | 0.28         | < 0.02           |                       |                  | ╉────┦               |                      |
| ŀ                           | 02/21/00                         | 0.012            | < 0.010            |                  | < 0.100            | < 0.1000             |                      |                        | 0.83         | < 0.02           |                       |                  | <b>∤</b> ───┦        | <u> </u>             |
| F                           | 10/23/00                         | 0.090            | < 0.010            |                  | < 0.100            | < 0.1000             |                      |                        | 0.54         | 0.03             |                       |                  | 1                    |                      |
|                             | 02/26/01                         | 0.055            | < 0.010            |                  | 0.029              | 0.0006               |                      |                        | 0.28         | 0.04             |                       |                  |                      |                      |
|                             | 11/24/01<br>09/11/02             | 0.012<br>0.098   | < 0.010<br>0.110   | < 0.0100         | < 0.100<br>0.010   | < 0.1000<br>< 0.1000 | < 0.0002             | 0.0069                 | 0.07         | 0.04 0.22        | < 0.0005              | 0.019            | <b>↓</b> /           |                      |
| ŀ                           | 09/11/02<br>02/12/03             | 0.098            | < 0.010            | < 0.0100         | 0.010              | < 0.1000             | < 0.0002             | 0.0069                 | 0.18         | < 0.02           | < 0.0005              | 0.019            | < 0.0500             | ł                    |
| F                           | 02/25/03                         | 0.390            | 0.010              | 0.0094           | 0.014              | 0.1000               | 0.0002               | 0.0006                 | 0.19         | < 0.02           | < 0.0005              | 0.012            | 0.0500               |                      |
|                             | 07/19/03                         | 0.075            | 0.020              |                  | 0.020              | < 0.1000             |                      |                        | 0.25         | 0.05             |                       |                  |                      |                      |
| _                           | 02/21/04                         | 0.027            | < 0.010            | < 0.0100         | 0.077              | < 0.0200             | < 0.0002             | < 0.0005               | 0.89         | 0.40             | 0.0006                | < 0.050          | < 0.0250             |                      |
| -                           | 11/09/04<br>01/04/05             | 0.029 0.019      | < 0.010            | 0.0180           | 0.031              | < 0.0200             | < 0.0002<br>< 0.0002 | < 0.0006<br>< 0.0050   | 0.36         | 0.04             | < 0.0005<br>< 0.0050  | 0.024<br>< 0.050 | < 0.0500<br>< 0.0500 |                      |
| F                           | 07/24/05                         | 0.019            | 0.022              | < 0.0001         | 0.047              | < 0.0200             | < 0.0002             | < 0.0030               | 2.70         | 0.04             | < 0.0050              | 0.035            | < 0.0300             | ł                    |
| F                           | 10/05/06                         | 0.690            | 0.013              | 15.000           | 0.016              | < 0.0005             | < 0.0002             | < 0.0005               | 0.73         | 0.02             | < 0.0050              | 0.017            | 0.0100               |                      |
| ľ                           | 01/05/08                         | 0.100            | 0.024              | 0.0170           | 0.017              | < 0.0005             | < 0.0002             | 0.0005                 | 0.59         | 0.09             | < 0.0005              | 0.012            | < 0.0050             |                      |
|                             | 08/07/08                         | 0.190            |                    | 0.0470           | 0.071              |                      | < 0.0002             | 0.0016                 | 0.74         |                  | 0.0011                | 0.043            | 0.0160               |                      |
| ŀ                           | 11/26/08                         | 0.120            | 0.018              | 0.0290           | 0.059              | 0.0006               | < 0.0002<br>< 0.0002 | 0.0013                 | 0.13         | 0.03             | < 0.0005              | 0.039            | 0.0110               | <b>├</b> ───         |
| ŀ                           | 12/17/08                         | 0.050<br>0.094   | 0.008              | 0.0070           | 0.019              | < 0.0005             | < 0.0002             | 0.0005                 | 0.24         | 0.24<br>< 0.02   | < 0.0005<br>< 0.0005  | 0.008            | < 0.0050<br>0.0070   | <u> </u>             |
| ŀ                           | 02/07/09                         | 0.094            | 0.004              | 0.0310           | 0.049              | < 0.0005             | < 0.0002             | 0.0018                 | 0.39         | 0.02             | < 0.0005              | 0.029            | 0.0070               | <u> </u>             |
| ŀ                           | 01/20/10                         | 0.100            | 0.006              | 0.0270           | 0.043              | < 0.0005             | < 0.0002             | 0.0011                 | 0.41         | < 0.02           | < 0.0050              | 0.031            | 0.0063               |                      |
| Ľ                           | 02/06/10                         | 0.038            | 0.006              | 0.0130           | 0.021              | < 0.0005             | < 0.0002             | 0.0005                 | 0.18         | < 0.02           | < 0.0050              | 0.014            | < 0.0050             |                      |
| ļ                           | 04/22/10                         | 0.088            | 0.013              | 0                | 0.012              | < 0.0005             |                      | 0                      | 0.13         | < 0.02           |                       |                  |                      | <u> </u>             |
| ŀ                           | 10/17/10<br>12/20/10             | 0.071 0.084      | 0.006              | 0.0057<br>0.0310 | 0.009              | < 0.0005<br>< 0.0005 | < 0.0002             | < 0.0005<br>0.0008     | 0.18<br>0.34 | < 0.02           | < 0.0005<br>< 0.0005  | 0.012 0.040      | 0.0058 0.0069        |                      |
| F                           | 12/20/10                         | 0.009            | 0.004              | 0.0510           | 0.030              | < 0.0005             | < 0.0002             | 0.0008                 | 0.04         | < 0.02           | < 0.0003              | 0.040            | 0.0009               | ł                    |
| F                           | 03/21/11                         | 0.048            | 0.002              | 0.0170           | 0.017              | < 0.0005             | < 0.0002             | 0.0006                 | 0.19         | < 0.02           | < 0.0005              | 0.026            | 0.0150               |                      |
|                             | 09/11/11                         | 0.220            | < 0.002            | 0.1200           | 0.130              | < 0.0005             | 0.0003               | 0.0038                 | 0.92         | < 0.02           | < 0.0025              | 0.140            | 0.0110               |                      |
|                             | 10/03/11                         | 0.092            | 0.005              | 0.0510           | 0.049              | < 0.0005             | < 0.0002             | 0.0011                 | 0.30         | < 0.02           | < 0.0005              | 0.050            | < 0.0100             |                      |
| -                           | 03/17/12                         | 0.060            | 0.004              | 0.0140           | 0.019              | 0.0006               | < 0.0002             | 0.0007                 | 0.22         | 0.03             | < 0.0005              | 0.018            | 0.0064               |                      |
| Las Vegas Wash              | 07/23/12<br>07/31/12             | 0.082            | 0.008              | 0.0240           | 0.030              | < 0.0005             | < 0.0002             | 0.0008                 | 0.26         | < 0.02           | < 0.0005<br>< 0.0005  | 0.028            | < 0.0050             |                      |
| @ The Club at               | 08/12/12                         | 0.025            | 0.009              | 0.0033           | 0.004              | < 0.0005             | < 0.0002             | < 0.0005               | 0.07         | 0.02             | < 0.0005              | 0.020            | < 0.0050             |                      |
| Sunrise (Formerly           | 08/18/12                         | 0.060            | 0.005              | NA               | 0.045              | < 0.0005             | NA                   | NA                     | 0.21         | < 0.02           | NA                    | NA               | < 0.0050             |                      |
| known as Desert             | 08/30/12                         | 0.062            | 0.006              | NA               | 0.056              | < 0.0005             | NA                   | NA                     | 0.27         | < 0.02           | NA                    | NA               | < 0.0050             |                      |
| Rose Golf Course)<br>(USGS) | 01/26/13                         | 0.042            | < 0.002            | NA               | 0.023              | < 0.0005             | NA                   | NA                     | 0.18         | < 0.02           | NA                    | NA               | < 0.0050             |                      |
| (0868)                      | 07/19/13<br>08/18/13             | 0.137<br>0.098   | 0.002 0.011        | 0.0684<br>0.0382 | 0.089              | < 0.0005<br>< 0.0005 | < 0.0002<br>< 0.0002 | 0.0027<br>0.0012       | 0.56         | 0.01             | < 0.0005<br>< 0.0005  | 0.054 0.031      | < 0.0050<br>0.0036   |                      |
| F                           | 08/18/13                         | 0.098            | 0.005              | 0.0382<br>NA     | 0.040              | < 0.0003             | < 0.0002<br>NA       | 0.0012<br>NA           | 0.33         | 0.01             | < 0.0003<br>NA        | NA               | 0.0038               |                      |
| Ī                           | 11/21/13                         | 0.079            | 0.002              | 0.0309           | 0.031              | < 0.0005             | < 0.0002             | 0.0014                 | 0.29         | 0.01             | < 0.0005              | 0.025            | 0.0030               |                      |
| -                           | 08/04/14<br>08/20/14<br>09/08/14 |                  | 0.000              |                  |                    |                      |                      |                        |              | ngo Wash below N |                       |                  |                      |                      |
| -                           | 01/11/15<br>01/30/15             | 0.043            | 0.022              | 0.0060<br>NA     | 0.007              | < 0.0005             | 0.0014<br>NA         | 0.0009<br>NA           | 0.11<br>0.10 | 0.05             | < 0.0005<br>NA        | 0.011<br>NA      | 0.0030               |                      |
| ŀ                           | 03/02/15                         | 0.043            | 0.014              | 0.0060           | 0.007              | < 0.0005             | < 0.0002             | < 0.0005               | 0.10         | 0.05             | < 0.0005              | 0.008            | 0.0030               | <u> </u>             |
| F                           | 07/06/15                         | 0.106            | 0.021              | 0.0070           | 0.029              | 0.0020               | 0.0011               | < 0.0005               | 0.61         | 0.09             | < 0.0005              | 0.015            | 0.0020               |                      |
|                             | 10/05/15                         | 0.017            | 0.017              | NA               | 0.004              | 0.0030               | 0.0015               | NA                     | 0.02         | 0.04             | NA                    | NA               | < 0.0050             |                      |
| Ļ                           | 04/09/16                         | 0.029            | 0.017              | 0.0040           | 0.013              | < 0.0005             | < 0.0002             | 0.0009                 | 0.06         | < 0.001          | < 0.0005              | 0.009            | < 0.0050             |                      |
| ŀ                           | 04/28/16                         | 0.033            | 0.010              | NA<br>NA         | 0.023              | < 0.0005             | < 0.0002             | NA<br>NA               | 0.13         | 0.05             | NA<br>NA              | NA<br>NA         | < 0.0050<br>0.0030   |                      |
| ŀ                           | 03/06/16                         | 0.027            | 0.018              | 0.0015           | < 0.012            | < 0.0005             | 0.0002               | < 0.0005               | 0.09         | 0.04             | < 0.0005              | 0.004            | 0.0030               | <u> </u>             |
| ŀ                           | 08/23/16                         | 0.005            | 0.004              | 0.0034           | 0.002              | < 0.0005             | < 0.0002             | 0.0015                 | 0.04         | 0.03             | < 0.0005              | 0.024            | 0.0026               |                      |
|                             | 12/22/16                         | 0.051            | 0.022              | 0.0041           | 0.006              | 0.0005               | < 0.0002             | 0.0005                 | 0.11         | 0.11             | < 0.0005              | 0.006            | 0.0012               |                      |
| [                           | 01/20/17                         | 0.023            | 0.009              |                  | 0.009              | 0.0005               |                      |                        | 0.10         | 0.05             |                       |                  | 0.0015               | L                    |
| ŀ                           | 02/18/17<br>07/17/17             | 0.012<br>0.026   | 0.007<br>0.013     | NA               | 0.004              | < 0.0005<br>< 0.0005 | < 0.0002             | 27.4                   | 0.04         | 0.03             | NA                    | NA               | 0.0041 0.0039        | <b>├</b> ───         |
| ŀ                           | 07/25/17                         | 0.026            | 0.013              | 0.0199           | 0.006              | < 0.0005             | < 0.0002             | NA<br>< 0.00100        | 0.13         | 0.02             | < 0.0010              | 0.023            | 0.0039               |                      |
| ľ                           | 01/09/18                         | 0.031            | 0.007              | 0.0058           | 0.015              | 0.0010               | < 0.0002             | < 0.00100              | 0.17         | 0.05             | < 0.0010              | 0.014            | 0.0021               |                      |
|                             | 07/15/18                         | 0.032            | 0.013              | 0.0050           | 0.008              | 0.0025               | < 0.0002             | < 0.00100              | 0.11         | 0.07             | < 0.0005              | 0.0075           | 0.0018               |                      |
| ŀ                           | 01/14/19                         | 0.037            | 0.007              | 0.0174           | 0.014              | < 0.0005             | < 0.0002             | < 0.00100              | 0.14         | 0.04             | < 0.0010              | 0.0194           | 0.0012               | ļ                    |
| ŀ                           | 02/14/19                         | 0.035            | 0.005              | 0.0118           | 0.014              | 0.0007               | < 0.0002             | < 0.00100              | 0.14         | 0.01             | < 0.0010              | 0.0194 0.0540    | < 0.0010             | < 0.0100             |
| ŀ                           | 11/20/19<br>11/28/19             | 0.088            | 0.009              | 0.0190<br>0.0031 | 0.025              | < 0.0020             | < 0.0003             | < 0.00200<br>< 0.00100 | 0.37         | 0.07             | < 0.0020<br>< 0.00100 | 0.0540           | < 0.0100             | < 0.0100             |
| F                           | 03/11/20                         | 0.035            | 0.005              | 0.0096           | 0.008              | < 0.0005             | < 0.0002             | < 0.00100              | 0.12         | 0.02             | < 0.00050             | 0.0120           | < 0.0010             | < 0.0005             |
| Ľ                           | 07/25/21                         | 0.048            | 0.005              | 0.0278           | 0.034              | < 0.0005             | < 0.0003             | 0.00152                | 0.22         | 0.02             | 0.00148               | 0.0319           | < 0.0020             | < 0.0013             |
| ļ                           | 07/25/22                         | 0.039            | 0.006              | 0.0117           | 0.015              | < 0.0012             | < 0.0003             | < 0.00125              | 0.16         | 0.10             | < 0.00120             | 0.0159           | < 0.0025             | < 0.0025             |
| ŀ                           | 08/11/22                         | 0.032            | 0.004              | 0.0102           | 0.024              | < 0.0012             | 0.0051               | < 0.00125              | 0.16         | 0.03             | < 0.00120             | 0.0126           | < 0.0012             | < 0.0012             |
| _                           | 06/16/23<br>09/01/23             | 0.038            | 0.006              | 0.0116<br>0.0242 | 0.012<br>0.028     | < 0.0010             | < 0.0003             | < 0.00100              | 0.24         | 0.05             | < 0.00100             | 0.0101           | < 0.0010<br>0.0011   | < 0.0010<br>< 0.0010 |
|                             | 09/01/23                         |                  |                    |                  |                    | < 0.0010             |                      | < 0.00100              |              | 0.01             | < 0.00100             |                  |                      |                      |
| ŀ                           | Median                           | 0.043            |                    |                  |                    |                      |                      |                        |              |                  |                       |                  |                      |                      |
| -                           | Median<br>Maximum                | 0.043<br>0.690   | 0.008 0.110        | 0.0145 15.000    | 0.023<br>0.180     | < 0.0005<br>< 0.1000 | < 0.0002<br>0.0051   | < 0.0010<br>0.0069     | 0.20 4.60    | < 0.0246<br>0.40 | < 0.0005<br>< 0.0050  | 0.0192 0.1400    | < 0.0050<br>< 0.0500 | < 0.0010<br>< 0.0025 |

| Location                    | Date                 | Arsenic<br>mg/L | Boron<br>mg/L  | Total Alkalinity<br>as CaCO3<br>mg/L | Aluminum<br>mg/L | Antimony<br>mg/L   | Barium<br>mg/L   | Beryllium<br>mg/L    | Bicarbonate<br>Alkalinity as HCO3<br>mg/L | Bromide<br>mg/L   | Bromate<br>mg/L    | CO2 Free<br>Calculated<br>mg/L | Carbonate<br>mg/L | Calcium<br>mg/L | Chlorate<br>mg/L | Chloride<br>mg/L | Chlorite<br>mg/L |
|-----------------------------|----------------------|-----------------|----------------|--------------------------------------|------------------|--------------------|------------------|----------------------|-------------------------------------------|-------------------|--------------------|--------------------------------|-------------------|-----------------|------------------|------------------|------------------|
|                             | 04/02/97             | ing/15          | 0.52           | ing/15                               | ing to           | ing 12             | ing is           | ing/L                | ing/L                                     | ing/D             | ing E              | ing, 13                        | ing D             | ing is          | ing/E            | ing/L            | ing/12           |
|                             | 07/28/97             |                 | 0.57           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 02/04/98             |                 | 0.37           | F                                    |                  |                    |                  | 1                    |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 02/24/98             |                 | 0.21           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 04/24/99             |                 | 0.55           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 04/30/99             |                 | 0.36           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 02/21/00             |                 | 0.25           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 10/23/00             |                 | 0.57           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 02/26/01             |                 | 0.24           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 11/24/01             |                 | 0.70           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 09/11/02             | 0.006           | 0.41           | 118                                  | 2.7              | 0.006              | 0.11             | < 0.001              | 114                                       | 0.32              | < 0.005            | 22.9                           | 0.12              | 200             | 0.270            | 160              | < 0.05           |
|                             | 02/12/03<br>02/25/03 | 0.034           | < 0.05<br>0.22 | 106                                  | 3.1              | 0.005              | 0.41             | < 0.001              | 129                                       | 0.11              | < 0.005            | 5.2                            | 0.42              | 89              | 0.031            | 43               | < 0.04           |
|                             | 02/23/03             | 0.006           | 0.33           | 138                                  | 6.2              | 0.005              | 0.19             | < 0.001              | 168                                       | 0.29              | < 0.005            | 13.4                           | 0.27              | 200             | 0.220            | 150              | < 0.10           |
|                             | 02/21/04             | 0.005           | 0.33           | 105                                  | 2.5              | 0.003              | 0.08             | < 0.001              | 108                                       | 0.25              | < 0.005            | 8.2                            | 0.27              | 120             | 0.170            | 80               | < 0.10           |
|                             | 11/09/04             | 0.005           | 0.11           | 69                                   | < 5.0            | < 0.001            | 0.32             | 0.001                | 85                                        | 0.05              | < 0.005            | 33.7                           | 0.03              | 280             | 0.075            | 18               | < 0.01           |
|                             | 01/04/05             | < 0.020         | 0.10           | 55                                   | < 2.5            | < 0.100            | 0.41             | < 0.010              | 67                                        | 0.03              | < 0.005            | 1.7                            | 0.35              | 410             | 0.035            | 13               | < 0.01           |
|                             | 07/24/05             | 0.010           | 0.16           | 74                                   | < 2.5            | 0.003              | 0.45             | < 0.001              | 91                                        | 0.06              | < 0.005            | 3.7                            | 0.24              | 370             | 0.069            | 23               | 0.06             |
|                             | 10/05/06             | 0.006           | 0.12           | 87                                   | 7.9              | 0.002              | 0.17             | 1                    |                                           | 0.06              | < 0.005            |                                |                   | 170             | 0.116            | 21               | < 0.01           |
|                             | 01/05/08             | 0.008           | 0.27           | 69                                   | 8.1              | 0.005              | 0.18             | < 0.001              | 84                                        | 0.10              | < 0.005            | 3.5                            | < 2.00            | 300             | 0.199            | 62               | < 0.01           |
|                             | 08/07/08             | 0.023           | 0.57           | 153                                  | 24.8             | 0.004              | 0.69             | 0.001                | 187                                       | 0.27              | < 0.005            | 12.0                           | < 2.00            | 510             | 0.567            | 140              | < 0.01           |
|                             | 11/26/08             | 0.019           | 0.62           | 155                                  | < 2.0            | 0.005              | 0.42             | < 0.001              | 189                                       | 0.24              | < 0.005            | 3.9                            | < 2.00            | 370             | 0.077            | 140              | < 0.01           |
|                             | 12/17/08             | 0.004           | 0.10           | 141                                  | 2.4              | 0.002              | 0.12             | < 0.001              | 172                                       | 0.05              | < 0.005            | 11.0                           | < 2.00            | 150             | 0.115            | 23               | < 0.01           |
|                             | 02/07/09             | < 0.020         | 0.34           | 94                                   | 20.5             | 0.003              | 0.44             | < 0.001              | 115                                       | 0.15              | < 0.005            | 4.7                            | < 2.00            | 390             | 0.024            | 63               | 0.02             |
|                             | 07/22/09             | 0.018           | 0.46           | 150                                  | 15.7             | 0.005              | 0.45             | < 0.002              | 183                                       | 0.23              | < 0.005            | 12.0                           | < 2.00            | 420             | 0.370            | 130              | < 0.05           |
|                             | 01/20/10<br>02/06/10 | 0.014 0.007     | 0.24           | 98<br>92                             | 13.0             | 0.003              | 0.44<br>0.21     | < 0.001 < 0.001      | 120                                       | 0.12<br>0.05      | < 0.005<br>< 0.005 | 3.5<br>2.3                     | < 2.00 < 2.00     | 330<br>150      | < 0.020          | 48               | < 0.01 < 0.01    |
|                             | 02/06/10<br>04/22/10 | 0.007           | 0.11           | 92                                   | 7.6              | 0.002              | 0.21             | < 0.001              | 112                                       | 0.05              | < 0.005            | 2.3                            | < 2.00            | 150             | 0.019            | 15               | < 0.01           |
|                             | 10/17/10             | 0.006           | 0.43           | 140                                  | 2.2              | 0.016              | 0.10             | < 0.001              | 180                                       | 0.20              | < 0.005            | 14.0                           | < 2.00            | 150             | 0.260            | 130              | < 0.02           |
|                             | 12/20/10             | 0.008           | 0.43           | 140                                  | 2.2              | < 0.001            | 0.10             | < 0.001              | 160                                       | 0.20              | < 0.005            | 3.5                            | < 2.00            | 370             | 0.280            | 200              | < 0.02           |
|                             | 12/22/10             | 0.010           | 0.57           | 150                                  | 2.7              | 0.001              | 0.57             | < 0.001              | 100                                       | 0.24              | < 0.005            | 5.5                            | < 2.00            | 570             | 0.200            | 200              | 0.01             |
|                             | 03/21/11             | 0.014           | 0.84           | 180                                  | 8.1              | 0.006              | 0.22             | < 0.001              | 220                                       | 0.53              | < 0.005            | 12.0                           | < 2.00            | 350             | 0.280            | 240              | < 0.01           |
|                             | 09/11/11             | 0.046           | 0.44           | 100                                  | 56.0             | < 0.005            | 1.80             | 0.003                | 130                                       | 0.15              | < 0.005            | 7.2                            | < 2.00            | 1,400           | < 0.010          | 70               | < 0.01           |
|                             | 10/03/11             | 0.018           | 0.27           | 99                                   | 28.0             | 0.002              | 0.60             | 0.001                | 120                                       | 0.11              | < 0.005            | 6.6                            | < 2.00            | 470             | 0.050            | 45               | < 0.01           |
|                             | 03/17/12             | 0.010           | 0.41           | 140                                  | 7.0              | 0.004              | 0.18             | < 0.001              | 170                                       | 0.27              | < 0.005            | < 2.0                          | < 2.00            | 190             | < 0.020          | 100              | 0.01             |
|                             | 07/23/12             | 0.018           | 0.27           | 94                                   | 18.0             | 0.002              | 0.34             | < 0.001              | 110                                       | 0.12              | < 0.005            | < 2.0                          | < 2.00            | 360             | 0.550            | 94               | < 0.01           |
| Las Vegas Wash              | 07/31/12             | 0.015           | 0.19           | 190                                  | 15.0             | < 0.001            | 0.23             | < 0.001              | 230                                       | 0.09              | < 0.005            | < 2.0                          | < 2.00            | 260             | 0.110            | 30               | < 0.01           |
| @ The Club at               | 08/12/12             | 0.006           | 0.28           | 82                                   | 0.9              | 0.004              | 0.08             | < 0.001              | 100                                       | 0.17              | < 0.005            | < 2.0                          |                   | 79              | 0.083            | 56               | < 0.01           |
| Sunrise (Formerly           | 08/18/12             | NA              | 0.23           | NA                                   | NA               | NA                 | NA               | NA                   | NA                                        | NA                | NA                 | NA                             | NA                | NA              | NA               | NA               | NA               |
| known as Desert             | 08/30/12             | NA              | 0.29           | NA                                   | NA               | NA                 | NA               | NA                   | NA                                        | NA                | NA                 | NA                             | NA                | NA              | NA               | NA               | NA               |
| Rose Golf Course)<br>(USGS) | 01/26/13             | NA<br>0.030     | 0.15           | NA                                   | NA<br>43.1       | NA<br>0.003        | NA<br>0.90       | NA<br>0.003          | NA<br>134                                 | NA                | NA                 | NA                             | NA                | NA<br>886       | NA < 0.100       | NA<br>54         | NA               |
| (0565)                      | 07/19/13             | 0.050           |                | 110                                  | 43.1<br>25.5     | 0.005              | 0.90             | 0.005                | 134<br>372                                | < 0.01            | < 0.100            | NA                             | < 10.00           | 000             | < 0.100          |                  | < 0.10           |
|                             | 08/18/13<br>08/25/13 | 0.019           | 0.26           | 305                                  |                  | 0.004              | 0.50             | 0.001<br>NA          | 372<br>NA                                 | < 0.01<br>< 0.01  | < 0.100            | NA                             | < 10.00           | 425<br>NA       | < 0.100<br>NA    | 34               | < 0.10           |
|                             | 11/21/13             | NA<br>0.012     | 0.21           | NA<br>155                            | NA<br>17.7       | NA<br>0.005        | NA<br>0.36       | 0.001                | 189                                       | < 0.01            | NA<br>< 0.005      | NA<br>NA                       | NA<br>< 10.00     | 326             | 0.050            | NA<br>266        | NA<br>< 0.10     |
|                             | 08/04/14             | 0.012           | 0.10           | 155                                  | 17.7             | 0.005              | 0.50             | 0.001                | 107                                       | < 0.01            | < 0.005            | ma                             | < 10.00           | 520             | 0.050            | 200              | 0.10             |
|                             | 08/20/14             |                 |                |                                      | Sample           | es not Taken due t | o Las Vegas Char | nel Improvement      | s, Sloan Channel to Bonar                 | za Road and Flami | ingo Wash below    | Nellis Boulevard I             | mprovement Proje  | ct              |                  |                  |                  |
|                             | 09/08/14             |                 |                |                                      |                  |                    | 0                | •                    |                                           |                   | 0                  |                                |                   |                 |                  |                  |                  |
|                             | 01/11/15             | 0.003           | 0.28           | 65                                   | 3.2              | 0.004              | 0.08             | < 0.001              | 79                                        | < 0.01            | < 0.005            | NA                             | < 2.00            | 82              | < 0.010          | 45               | < 0.01           |
|                             | 01/30/15             | NA              | 0.14           | NA                                   | NA               | NA                 | NA               | NA                   | NA                                        | NA                | NA                 | NA                             | NA                | NA              | NA               | NA               | NA               |
|                             | 03/02/15             | 0.004           | 0.21           | 123                                  | 2.0              | 0.003              | 0.07             | < 0.001              | 150                                       | 0.06              | < 0.005            | NA                             | < 2.00            | 69              | < 0.010          | 41               | < 0.01           |
|                             | 07/06/15             | 0.004           | 0.17           | 203                                  | 1.9              | 0.008              | 0.25             | < 0.001              | 248                                       | < 0.01            | < 0.005            | NA                             | < 2.00            | 145             | < 0.010          | 38               | < 0.01           |
|                             | 10/05/15             | NA              | 0.19           | NA                                   | NA               | NA                 | NA               | NA                   | NA                                        | NA                | NA                 | NA                             | NA                | NA              | NA               | NA               | NA               |
|                             | 04/09/16             | 0.003           | 0.09           | 198                                  | 1.6              | 0.005              | 0.13             | < 0.0010             | 242                                       | < 0.01            | < 0.005            |                                | < 2.00            | 226             | < 0.010          | 7                | < 0.01           |
|                             | 04/28/16             | NA              | 0.22           | NA                                   | NA               | NA                 | NA               | NA                   | NA                                        | NA                | NA                 | NA                             | NA                | NA              | NA               | NA               | NA               |
|                             | 05/06/16<br>08/04/16 | NA              | 0.18           | NA                                   | NA               | NA<br>0.002        | NA               | NA                   | NA<br>73                                  | NA                | NA<br>1 0.005      | NA                             | NA<br>< 2.00      | NA              | NA<br>c 0.010    | NA<br>20         | NA<br>< 0.01     |
|                             | 08/04/16<br>08/23/16 | 0.001 0.010     | 0.11 0.12      | 60<br>65                             | 0.011            | 0.002              | 0.08             | < 0.0010<br>< 0.0010 | 73 79                                     | < 0.01<br>< 0.01  | < 0.005<br>NA      | NA<br>NA                       | < 2.00            | NA              | < 0.010<br>NA    | 20               | < 0.01<br>NA     |
|                             | 12/22/16             | 0.010           | 0.12           | 65<br>75                             | 0.3              | 0.005              | 0.21             | < 0.0010             | 92                                        | < 0.01            | NA                 | NA                             | < 2.00            | NA              | NA               | 25               | NA               |
|                             | 01/20/17             | 0.005           | 0.14           | 15                                   | 0.7              | 0.005              | 0.00             | . 0.001              | 72                                        | 0.05              | 1975               | 13/4                           | - 2.00            | 1975            | 1975             | 2.3              | 13/3             |
|                             | 02/18/17             |                 | 0.34           |                                      |                  |                    |                  |                      |                                           |                   |                    |                                |                   |                 |                  |                  |                  |
|                             | 07/17/17             | NA              | 0.21           | 125                                  | NA               | NA                 | NA               | NA                   | 153                                       | NA                | NA                 | 1                              | < 5.00            | NA              | NA               | NA               | NA               |
|                             | 07/25/17             | 0.0086          | 0.09           | 75                                   | 0.07             | 0.0019             | 0.14             | < 0.0010             | 92                                        | 0.03              | ~                  |                                | < 2.00            | ~               | ~                | 26               | ~                |
|                             | 01/09/18             | 0.0047          | 0.16           | 90                                   | 1.11             | 0.0047             | 0.09             | < 0.0010             | 110                                       | 0.02              | ~                  |                                | < 5.00            | ~               | ~                | 17               | ~                |
|                             | 07/15/18             | 0.0025          | 0.18           | 85                                   | 0.48             | 0.0058             | 0.08             | < 0.0010             | 104                                       | 0.03              | NA                 | NA                             | < 2.00            | NA              | NA               | 21               | NA               |
|                             | 01/14/19             | 0.0037          | 0.13           | 62                                   | 7.58             | 0.0036             | 0.12             | < 0.0010             | 76                                        | 0.13              | NA                 | NA                             | < 5.00            | NA              | NA               | 13               | NA               |
|                             | 02/14/19             | 0.0033          | 0.09           | 78                                   | 4.55             | 0.0036             | 0.17             | < 0.0010             | 95                                        | < 0.01            | NA                 | NA                             | < 5.00            | NA              | NA               | < 10             | NA               |
|                             | 11/20/19             | 0.0080          | 0.17           | 84                                   | 2.71             | 0.0040             | 0.25             | < 0.0020             | 84                                        | < 0.05            | NA                 | NA                             | < 5.00            | NA              | NA               | 24               | NA               |
|                             | 11/28/19             | 0.0036          | < 0.05         | 60                                   | 2.70             | 0.0024             | 0.08             | < 0.0010             | 60                                        | < 0.05            | NA                 | NA                             | < 5.00            | NA              | NA               | 6                | NA               |
|                             | 03/11/20             | 0.0041          | 0.02           | 51                                   | 5.52             | 0.0043             | 0.10             | < 0.0010             | 51                                        | 0.02              | NA                 | NA                             | < 5.00            | NA              | NA               | 6                | NA               |
|                             | 07/25/21             | 0.0094 0.0071   | 0.20           | 960<br>102                           | 5.18<br>10.10    | 0.0020             | 0.51             | < 0.0020<br>< 0.0012 | 960<br>102                                | 0.05              | NA                 | NA<br>NA                       | < 5.00<br>< 5.00  | NA              | NA<br>NA         | 20<br>28         | NA               |
|                             | 07/25/22<br>08/11/22 | 0.0071          | 0.18           | 102                                  | 10.10            | 0.0041             | 0.4/             | < 0.0012             | 102                                       | 0.07              | NA                 |                                | < 5.00            | NA              | NA               | 28               | NA               |
|                             | 06/16/23             | 0.0041 0.0058   | 0.09           | 204                                  | 5.47             | 0.0036             | 0.34             | < 0.0012             | 204                                       | 0.03              | NA                 | NA<br>NA                       | < 5.00            | NA              | NA               | 10               | NA               |
|                             | 06/16/23             | 0.0058          | 0.10           | 204                                  | 5.47             | 0.0044             | 0.15             | < 0.0010             | 204                                       | < 0.05            | NA                 | NA                             | < 5.00            | NA              | NA               | 9                | NA               |
|                             | Median               | 0.0081          | 0.212          | 102                                  | 5.09             | 0.0038             | 0.27             | < 0.0010             | 124                                       | 0.052             | < 0.005            | 4.93                           | < 2.000           | 290             | 0.077            | 34.8             | < 0.01           |
|                             | Maximum              | 0.0460          | 0.8400         | 960                                  | 56.0             | 0.1000             | 1.800            | < 0.0010             | 960.0                                     | 0.052             | < 0.10             | 33.7                           | < 10.00           | 1,400           | 0.57             | 266              | < 0.10           |
|                             |                      |                 |                |                                      | 0.0113           | < 0.0010           | 0.058            | < 0.0100             | 51.0                                      | < 0.005           | < 0.005            | 1.68                           | < 0.028           | 69.400          |                  |                  | < 0.10           |

| Location                    | Date                 | Diuron<br>mg/L  | <b>Diquat</b><br>mg/L | Paraquat<br>mg/L | Endothall<br>mg/L    | Fluoride<br>mg/L | <b>Glyphosate</b><br>mg/L | Hardness<br>as CaCo3<br>mg/L | Hydroxide<br>as OH<br>mg/L | Iron<br>mg/L    | Langelier<br>Index<br>None | Magnesium<br>mg/L  | Manganese<br>mg/L | Potassium<br>mg/L | Reactive<br>Silica<br>mg/L |
|-----------------------------|----------------------|-----------------|-----------------------|------------------|----------------------|------------------|---------------------------|------------------------------|----------------------------|-----------------|----------------------------|--------------------|-------------------|-------------------|----------------------------|
|                             | 04/02/97             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 07/28/97             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 02/04/98<br>02/24/98 |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 04/24/99             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 04/30/99             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 02/21/00             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 10/23/00             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 02/26/01             |                 |                       | _                |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 09/11/02             |                 |                       |                  | < 0.020              | 0.810            | 0.020                     |                              | 0.002                      | 4               | 0.11                       | 71                 | 0.14              | 18.0              | 20                         |
|                             | 02/12/03             |                 | < 0.0004              | < 0.002          | < 0.005              | 0.550            | 0.010                     | 839                          | 0.009                      | 2               | 0.32                       | 30                 | 0.79              | 9.6               | 11                         |
|                             | 02/25/03             |                 |                       |                  |                      |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 07/19/03 02/21/04    |                 |                       | _                | < 0.020              | 0.620            | 0.014                     | 775<br>481                   | 0.004                      | 7               | 0.48                       | 67<br>44           | 0.23              | 15.0<br>12.0      | 14                         |
|                             | 11/09/04             |                 |                       | -                | -                    | 0.530            | < 0.006                   | 481                          | 0.005                      | 57              | -0.29                      | 44 87              | 0.08              | 23.0              | 14                         |
|                             | 01/04/05             | < 0.0010        | < 0.0004              | < 0.002          | < 0.005              | 0.220            | < 0.006                   | 1,440                        | 0.010                      | 24              | 0.89                       | 100                | 0.58              | 11.0              | 160                        |
|                             | 07/24/05             | 0.0087          | < 0.0004              | < 0.002          | < 0.020              | 0.260            | 0.010                     | 1,310                        | 0.007                      | 17              | 0.68                       | 96                 | 0.43              | 11.0              | 10                         |
|                             | 10/05/06             |                 |                       |                  |                      |                  | 0.007                     | 610                          |                            | 9               |                            | 44                 | 0.22              | 7.6               | 12                         |
|                             | 01/05/08             |                 |                       |                  |                      | 0.076            | 0.008                     | 1,100                        | 13.000                     | 13              | 0.60                       | 82                 | 0.22              | 14.0              | 9                          |
|                             | 08/07/08<br>11/26/08 | 0.0011 < 0.0010 | < 0.0040<br>< 0.0040  | < 0.002 < 0.002  | < 0.020<br>< 0.020   | 0.480            | 0.020<br>0.029            | 2,060 1,500                  | < 2.000<br>< 2.000         | 34<br>19        | 0.90 1.30                  | 190<br>140         | 1.00 0.55         | 28.0<br>33.0      | 18<br>14                   |
|                             | 12/17/08             | < 0.0010        | < 0.0040              | < 0.002          | < 0.020              | 0.530            | 0.029                     | 552                          | < 2.000                    | 9               | 0.40                       | 43                 | 0.55              | 7.2               | 14<br>5                    |
|                             | 02/07/09             | < 0.0010        | < 0.0040              | < 0.002          | < 0.020              | 0.470            | 0.062                     | 1,430                        | < 2.000                    | 23              | 0.40                       | 110                | 0.73              | 19.0              | 12                         |
|                             | 07/22/09             | < 0.0040        | < 0.0016              | < 0.008          | < 0.020              | 0.540            | 0.075                     | 1,600                        | < 2.000                    | 20              | 0.83                       | 140                | 0.51              | 27.0              | 15                         |
|                             | 01/20/10             | < 0.0010        | < 0.0004              | < 0.002          | < 0.020              | 0.260            | 0.018                     | 1,100                        | < 2.000                    | 10              | 0.88                       | 79                 | 0.53              | 13.0              | 88                         |
|                             | 02/06/10             | < 0.0010        | < 0.0004              | < 0.002          | < 0.005              | 0.180            | < 0.006                   | 570                          | < 2.000                    | 8               | 0.69                       | 44                 | 0.23              | 6.3               | 81                         |
|                             | 04/22/10             | < 0.0010        | < 0.0004              | < 0.002          | < 0.009              | 0,390            | 0.240                     | 690                          | < 2.000                    | 3               | 0.31                       | 77                 | 0.12              | 18.0              | 30                         |
|                             | 12/20/10             | < 0.0010        | < 0.0004              | < 0.002          | < 0.009              | 0.280            | < 0.006                   | 1,500                        | < 2.000                    | 30              | 1.20                       | 140                | 0.12              | 24.0              | 110                        |
|                             | 12/22/10             | 0.0010          | 0.0001                | 0.002            | . 0.007              | 0.200            | . 0.000                   | 1,000                        | 2.000                      | 50              | 1.20                       | 110                | 0.75              | 21.0              | 110                        |
|                             | 03/21/11             | < 0.0020        | < 0.0004              | < 0.002          | < 0.005              | 0.490            | 0.011                     | 1,700                        | < 2.000                    | 11              | 0.93                       | 200                | 0.41              | 35.0              | 29                         |
|                             | 09/11/11             | < 0.0010        | < 0.0004              | < 0.002          | < 0.020              | 0.330            | 0.024                     | 5,600                        | < 2.000                    | 100             | 1.30                       | 490                | 2.40              | 46.0              | 150                        |
|                             | 10/03/11             | < 0.0010        | < 0.0004              | < 0.002          | < 0.020              | 0.220            | 0.008                     | 1,900                        | < 2.000                    | 30              | 0.78                       | 170                | 0.79              | 20.0              | 120                        |
|                             | 03/17/12<br>07/23/12 | < 0.0010        | < 0.0004              | < 0.002          | < 0.020              | 0.410 0.320      | 0.070                     | 890<br>1,200                 | < 2.000<br>< 2.000         | 9               | 0.45<br>0.73               | 100                | 0.38              | 23.0<br>21.0      | 75                         |
| Las Vegas Wash              | 07/31/12             |                 |                       |                  |                      | 0.320            | < 0.005                   | 970                          | < 2.000                    | 20              | 1.10                       | 75                 | 0.38              | 15.0              | 150                        |
| @ The Club at               | 08/12/12             |                 |                       |                  |                      | 0.270            | 0.014                     | 390                          | < 2.000                    | 1               | -0.24                      | 47                 | 0.08              | 12.0              | 13                         |
| Sunrise (Formerly           | 08/18/12             |                 |                       |                  |                      | NA               | NA                        | NA                           | NA                         | NA              | NA                         | NA                 | NA                | NA                | NA                         |
| known as Desert             | 08/30/12             |                 |                       |                  |                      | NA               | NA                        | NA                           | NA                         | NA              | NA                         | NA                 | NA                | NA                | NA                         |
| Rose Golf Course)<br>(USGS) | 01/26/13<br>07/19/13 |                 |                       |                  |                      | NA<br>< 0.100    | NA<br>NA                  | NA<br>2.793                  | NA<br>< 2.000              | NA<br>41        | NA<br>NA                   | NA<br>141          | NA<br>2.06        | NA<br>34.7        | NA<br>119                  |
| (0505)                      | 08/18/13             |                 |                       |                  |                      | 0.130            | NA                        | 1,530                        | < 2.000                    | 23              | NA                         | 141                | 0.66              | 18.3              | 108                        |
|                             | 08/25/13             |                 |                       |                  |                      | NA               | NA                        | NA                           | NA                         | NA              | NA                         | NA                 | NA                | NA                | NA                         |
|                             | 11/21/13             |                 |                       |                  |                      | 0.410            | NA                        | 1,155                        | < 2.000                    | 17              | NA                         | 83                 | 0.60              | 13.3              | 87                         |
|                             | 08/04/14             |                 |                       |                  |                      |                  |                           | a, a, i                      |                            |                 |                            |                    |                   |                   |                            |
|                             | 08/20/14 09/08/14    | -               |                       | Samp             | les not Taken due to | Las Vegas Chann  | el Improvements,          | Sloan Channel to             | Bonanza Road and           | d Flamingo Wash | below Nellis Boul          | levard Improvement | nt Project        |                   |                            |
|                             | 09/08/14             |                 | 1                     |                  |                      | 0.420            | NA                        | 362                          | < 2.000                    | 4               | NA                         | 38                 | 0.10              | 15.6              | 22                         |
|                             | 01/30/15             |                 |                       |                  |                      | NA               | NA                        | NA                           | NA                         | NA              | NA                         | NA                 | NA                | NA                | NA                         |
|                             | 03/02/15             |                 |                       |                  |                      | < 0.100          | NA                        | 320                          | < 2.000                    | 2               | NA                         | 36                 | 0                 | 10                | 21                         |
|                             | 07/06/15             |                 |                       |                  |                      | 0.340            | NA                        | 500                          | < 2.000                    | 2               | NA                         | 34                 | 0.27              | 66.5              | 12                         |
|                             | 10/05/15             |                 | L                     |                  | +                    | NA               | NA                        | NA                           | NA                         | NA              | NA                         | NA                 | NA                | NA                | NA                         |
|                             | 04/09/16<br>04/28/16 |                 |                       | +                | +                    | 0.220<br>NA      |                           | 707<br>NA                    | < 2.000<br>NA              | 1<br>NA         | NA<br>NA                   | 35<br>NA           | 0.23<br>NA        | 4.8<br>NA         | 6<br>NA                    |
|                             | 05/06/16             |                 |                       | 1                | 1                    | NA               | N                         | NA                           | NA                         | NA              | NA                         | NA                 | NA                | NA                | NA                         |
|                             | 08/04/16             |                 |                       | 1                |                      | 0.186            | NA                        | 101                          | < 2.000                    | 0.305           | NA                         | 6                  | 0.03              | NA                | NA                         |
|                             | 08/23/16             |                 |                       |                  |                      | 0.315            | NA                        | 1,410                        | < 2.000                    | 0.764           | NA                         | 44                 | 0.53              | NA                | NA                         |
|                             | 12/22/16             |                 | L                     |                  | +                    | 0.699            | NA                        | 243                          | < 2.000                    | 0.689           | NA                         | 18                 | 0.10              | NA                | NA                         |
|                             | 01/20/17<br>02/18/17 |                 | L                     |                  | _                    |                  |                           |                              |                            |                 |                            |                    |                   |                   |                            |
|                             | 07/17/17             |                 |                       |                  |                      | NA               | ~                         | NA                           | < 5.000                    | NA              | ~                          | NA                 | NA                | NA                | NA                         |
|                             | 07/25/17             |                 |                       |                  |                      | 0.136            | ~                         | 653                          | < 2.000                    | 0.02            | ~                          | 18.5               | 0.21              | ~                 | ~                          |
|                             | 01/09/18             |                 |                       |                  |                      | 0.458            | ~                         | 438                          | < 5.000                    | 1.47            | ~                          | 28.7               | 0.20              | ~                 | ~                          |
|                             | 07/15/18             |                 | L                     |                  | +                    | 0.362            | NA                        | 231                          | < 2.000                    | 0.76            | NA                         | 16.2               | 0.06              | NA                | NA                         |
|                             | 01/14/19<br>02/14/19 |                 |                       | +                | +                    | 0.201<br>0.162   | NA<br>NA                  | 392<br>344                   | < 5.000<br>< 5.000         | 6.68<br>5.70    | NA<br>NA                   | 27.4               | 0.19<br>0.14      | NA<br>NA          | NA<br>NA                   |
|                             | 11/20/19             |                 |                       | 1                | 1                    | 1.080            | NA                        | 622                          | < 5.000                    | 3.01            | NA                         | 37.1               | 0.14              | NA                | NA                         |
|                             | 11/28/19             | İ               |                       | 1                | 1                    | < 0.100          | NA                        | 295                          | < 5.000                    | 1.91            | NA                         | 19.2               | 0.09              | NA                | NA                         |
|                             | 03/11/20             |                 |                       | 1                |                      | 0.324            | NA                        | 203                          | < 5.000                    | 0.71            | NA                         | 13.3               | 0.10              | NA                | NA                         |
|                             | 07/25/21             |                 |                       |                  |                      | 0.464            | NA                        | 1,600                        | < 5.000                    | 29.30           | NA                         | 100                | 0.50              | NA                | NA                         |
|                             | 07/25/22             |                 |                       |                  | -                    | 0.406            | NA                        | 629                          | < 5.000                    | 9.24            | NA                         | 43.1               | 0.17              | NA                | NA                         |
|                             | 08/11/22<br>06/16/23 |                 |                       | +                | +                    | 0.178 0.265      | NA<br>NA                  | 606<br>390                   | < 5.000                    | 11.60<br>5.14   | NA                         | 41.1<br>26.8       | 0.19<br>0.15      | NA<br>NA          | NA<br>NA                   |
|                             | 09/01/23             |                 |                       |                  |                      | < 0.100          | NA                        | 715                          | < 5.000                    | 12.30           | NA                         | 45.7               | 0.15              | NA                | NA                         |
|                             | Median               | < 0.001         | < 0.0004              | < 0.0020         | < 0.0200             | 0.315            | 0.0125                    | 715                          | < 2.000                    | 8.55            | 0.71                       | 46                 | 0.250             | 16.80             | 22                         |
|                             | Maximum              | < 0.009         | < 0.004               | < 0.008          | < 0.020              | 1.080            | 0.240                     | 5,600                        | 13.00                      | 100.0           | 1.30                       | 490                | 2.400             | 66.5              | 160                        |
|                             | Minimum              | < 0.001         | < 0.0004              | < 0.002          | < 0.005              | 0.076            | < 0.006                   | 101                          | 0.001                      | 0.018           | -0.290                     | 6.2                | 0.030             | 4.8               | 5                          |

| Location          | Date                 | Sodium<br>mg/L | Sulfate<br>mg/L | Thallium<br>mg/L     | Organic<br>Carbon<br>mg/L | Cyanide<br>mg/L   | BOD<br>mg/L     | COD<br>mg/L        | Color<br>ACU    | Turbidity<br>NTU | Phenol<br>mg/L       | Petroleum<br>Hydrocarbons | TPH<br>(diesel)<br>MPN/100 mL | TPH<br>(gasoline)<br>MPN/100 mL | Total<br>Chlorine<br>mg/L |
|-------------------|----------------------|----------------|-----------------|----------------------|---------------------------|-------------------|-----------------|--------------------|-----------------|------------------|----------------------|---------------------------|-------------------------------|---------------------------------|---------------------------|
|                   | 04/02/97             | Ū              | Ū               | Ŭ                    | Ū                         | 0.015             | 77              | 290                | 150             | 230              | 0.010                | 4                         |                               |                                 | Ũ                         |
| ł                 | 07/28/97             |                |                 |                      |                           | 0.007             | 35              | 240                | 180             | 220              | < 0.010              | < 1                       |                               |                                 | < 0.10                    |
| •                 | 02/04/98             |                |                 |                      |                           | < 0.005           | 74              | 260                | 25              | 1,660            | 0.013                | · ·                       |                               |                                 | \$ 0.10                   |
| •                 | 02/24/98             |                |                 |                      |                           | < 0.005           | 10              | 90                 | 10              | 1,050            | < 0.010              | < 1                       |                               |                                 |                           |
| ·                 | 04/24/99             |                |                 |                      |                           | < 0.005           | 10              | 70                 | 10              | 1,050            | < 0.010              | <u>`</u> '                |                               |                                 |                           |
| -                 | 04/30/99             |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 02/21/00             |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 10/23/00             |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| ŀ                 | 02/26/01             |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 11/24/01             |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| ŀ                 | 09/11/02             | 130            | 460             | < 0.0010             | 116                       |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 09/11/02<br>02/12/03 | 43             | 230             | < 0.0010             |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 02/12/03             | 43             | 230             | < 0.0010             | 36                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 02/23/03             | 98             | 420             | < 0.0010             | 66                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 |                      |                |                 |                      | 00                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 02/21/04<br>11/09/04 | 64<br>20       | 280<br>180      | < 0.0100<br>< 0.0010 |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 |                      |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 01/04/05             | 15<br>29       | 130             | < 0.0010             | 6                         |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 07/24/05             |                | 140             | < 0.0010             | 34                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| -                 | 10/05/06             | 23             | 110             | < 0.0010             | 21                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| ļ                 | 01/05/08             | 55             | 220             | < 0.0010             | 55                        |                   |                 | +                  | ł               |                  |                      | ł                         | ł                             | ł                               |                           |
| ļ                 | 08/07/08             | 120            | 660             | < 0.0010             | 68                        |                   |                 | +                  | ł               |                  |                      | ł                         | ł                             | ł                               |                           |
| ļ                 | 11/26/08             | 120            | 440             | < 0.0010             | 54                        |                   |                 | +                  | ł               |                  |                      | ł                         | ł                             | ł                               |                           |
| ļ                 | 12/17/08             | 439            | 97              | < 0.0010             | 28                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| Ļ                 | 02/07/09             | 1,020          | 300             | < 0.0010             | 26                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| ļ                 | 07/22/09             | 110            | 530             | < 0.0020             | 99                        |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
|                   | 01/20/10             | 49             | 270             | < 0.0010             | 28                        |                   |                 | 1                  | Į               |                  |                      | l                         | Į                             | Į                               |                           |
| [                 | 02/06/10             | 16             | 64              | < 0.0010             | 16                        |                   |                 |                    | L               |                  |                      | ·                         | L                             | L                               |                           |
| [                 | 04/22/10             |                |                 |                      |                           |                   |                 |                    | L               |                  |                      | ·                         | L                             | L                               |                           |
|                   | 10/17/10             | 100            | 490             | < 0.0010             | 66                        |                   |                 |                    |                 | 28               |                      |                           |                               |                                 |                           |
|                   | 12/20/10             | 150            | 580             | < 0.0010             | 18                        |                   |                 |                    |                 | 1,200            |                      |                           |                               |                                 |                           |
|                   | 12/22/10             |                |                 |                      |                           |                   |                 |                    |                 | 760              |                      |                           |                               |                                 |                           |
|                   | 03/21/11             | 220            | 1,300           | < 0.0010             | 38                        |                   |                 |                    |                 | 210              |                      |                           |                               |                                 |                           |
|                   | 09/11/11             | 75             | 500             | < 0.0050             | 54                        |                   |                 |                    |                 | 5,200            |                      |                           |                               |                                 |                           |
| Ī                 | 10/03/11             | 48             | 350             | < 0.0010             | 29                        |                   |                 |                    |                 | 1,100            |                      |                           |                               |                                 |                           |
| Ī                 | 03/17/12             | 95             | 520             | < 0.0010             | 68                        |                   |                 |                    |                 | 560              | < 0.005              |                           |                               |                                 |                           |
| Ī                 | 07/23/12             | 64             | 380             | < 0.0010             |                           |                   |                 |                    |                 | 700              |                      |                           |                               |                                 |                           |
| Las Vegas Wash    | 07/31/12             | 34             | 150             | < 0.0010             |                           |                   |                 |                    |                 | 780              |                      |                           |                               |                                 |                           |
| @ The Club at     | 08/12/12             | 58             | 290             | < 0.0010             |                           |                   |                 |                    |                 | 43               |                      |                           |                               |                                 |                           |
| unrise (Formerly  | 08/18/12             | NA             | NA              | NA                   |                           |                   | 25              |                    |                 | 2,300            |                      |                           |                               |                                 |                           |
| known as Desert   | 08/30/12             | NA             | NA              | NA                   |                           |                   | 18              |                    |                 | 2,600            |                      |                           |                               |                                 |                           |
| Rose Golf Course) | 01/26/13             | NA             | NA              | NA                   |                           |                   | 30              |                    |                 | 860              |                      |                           |                               |                                 |                           |
| (USGS)            | 07/19/13             | 46             | 323             | 0.0012               | 47                        | < 0.050           | 36              | 189                |                 | 193              | 0.810                |                           |                               |                                 |                           |
| (,                | 08/18/13             | 38             | 162             | < 0.0012             | 47                        | < 0.050           | 40              | 990                |                 | 790              | 0.360                |                           |                               |                                 |                           |
| •                 | 08/25/13             | NA             | NA              | NA                   |                           | 0.050             | < 2             | 566                |                 | 368              | NA                   |                           |                               |                                 |                           |
| •                 | 11/21/13             | 31             | 395             | < 0.0010             | 46                        | < 0.050           | 47              | 160                |                 | 746              | 0.360                |                           |                               |                                 |                           |
| -                 | 08/04/14             | 51             | 575             | < 0.0010             | 40                        | < 0.050           | 47              | 100                |                 | 740              | 0.500                | 1                         |                               |                                 |                           |
| -                 | 08/20/14             |                |                 | Samples              | not Taken due to          | I as Vegas Channe | l Improvements  | Sloan Channel to B | onanza Road and | Flamingo Wash    | helow Nellis Bou     | levard Improveme          | ent Project                   |                                 |                           |
| -                 | 09/08/14             |                |                 | oumpies              | not runch due to          | Las regus chaint  | i improvemento, | bioun channel to b | onuna reolu unu | i uningo i un    | i below i tellis boo | netura improtent          | ent Project                   |                                 |                           |
| ŀ                 | 01/11/15             | 39             | 185             | < 0.0010             | 32                        | < 0.050           | 41              | 98                 | 1               | 136              | 0.250                | 1                         | 1                             | 1                               |                           |
| ŀ                 | 01/30/15             |                |                 |                      |                           |                   | 22              |                    |                 |                  | 0.250                |                           |                               |                                 |                           |
| ŀ                 | 01/30/15<br>03/02/15 | NA<br>116      | NA<br>167       | NA<br>< 0.0010       | NA                        | NA<br>< 0.050     | 16              | 76<br>146          |                 | 147<br>198       | 0.120                |                           |                               |                                 |                           |
| Ļ                 |                      |                |                 |                      | 24                        |                   |                 |                    | l               |                  |                      | l                         | l                             | l                               |                           |
| Ļ                 | 07/06/15             | 70             | 114<br>NA       | < 0.0010             | 37                        | < 0.050           | 41              | 275<br>306         | l               | 340              | 0.460                | l                         | l                             | l                               |                           |
| Ļ                 | 10/05/15             | NA             | NA              | NA                   | NA                        | NA                | 26              |                    | l               | 485              | NA                   | l                         | l                             | l                               |                           |
| ļ                 | 04/09/16             | 11             | 44              | < 0.0010             | 16                        | < 0.050           | 58              | 127                | ł               | 1,152            | 0.440                | ł                         | ł                             | ł                               |                           |
| ļ                 | 04/28/16             | NA             | NA              | NA                   | NA                        | NA                | 263             | 243                | ł               | 939              | NA                   | ł                         | ł                             | ł                               |                           |
| ļ                 | 05/06/16             | NA             | NA              | NA                   | NA                        | NA                | 17              | 232                | ł               | 628              | NA                   | ł                         | ł                             | ł                               |                           |
| ļ                 | 08/04/16             | 11             | 63              | < 0.0010             | 41                        | < 0.050           | 179             | 103                |                 | 340              | 0.170                |                           |                               |                                 |                           |
| ļ                 | 08/23/16             | 30             | 173             | < 0.0010             | 45                        | < 0.050           | < 2             | 73                 |                 | 401              | 0.121                |                           |                               |                                 |                           |
| ļ                 | 12/22/16             | 20             | 103             | < 0.0010             | 51                        | < 0.050           | 75              | 522                |                 | 292              | 0.358                |                           |                               |                                 |                           |
|                   | 01/20/17             |                |                 |                      |                           |                   | 15              | < 39               |                 | 164              |                      |                           |                               |                                 |                           |
| [                 | 02/18/17             |                |                 |                      |                           |                   | 29              | < 39               | L               | 271              |                      | ·                         | L                             | L                               |                           |
| [                 | 07/17/17             | NA             | NA              | NA                   | NA                        |                   | 42.3            | 130                |                 | 355.0            |                      |                           |                               |                                 |                           |
| Ļ                 | 07/25/17             | 27             | 111             | < 0.001              | 131                       | < 0.050           | 23.8            | < 39               |                 | 2,190.0          | 0.38                 |                           |                               |                                 |                           |
| ļ                 | 01/09/18             | 18             | 55              | < 0.001              | 64                        | < 0.050           | 44.5            | 269                | L               | 326.0            | 0.13                 | l                         | L                             | L                               |                           |
| [                 | 07/15/18             | 22             | 76              | < 0.001              | 39                        | < 0.050           | < 2             | 95.9               | L               | 160.0            | 0.13                 | ·                         | L                             | L                               |                           |
| [                 | 01/14/19             | 11             | 39              | < 0.001              | 44                        | < 0.010           | 93.0            | 178.0              | L               | 328.0            | 0.07                 | ·                         | L                             | L                               |                           |
| [                 | 02/14/19             | 11             | 21              | < 0.001              | 15                        | < 0.005           | < 2             | 45.0               |                 | 278.0            | 0.13                 |                           |                               |                                 |                           |
| Ī                 | 11/20/19             | 21.3           | 72              | < 0.001              | 64                        | < 0.005           | 54.8            | 282.0              |                 | 495.0            | 0.44                 |                           |                               |                                 |                           |
| Ī                 | 11/28/19             | 6.5            | 20              | < 0.001              | 15                        | < 0.010           | 5.7             | 98.6               |                 | 62.9             | 0.12                 |                           |                               |                                 |                           |
| Ī                 | 03/11/20             | 6.8            | 19              | < 0.001              | 16                        | < 0.005           | 25.5            | 76.1               |                 | 169.0            | 0.75                 |                           |                               |                                 |                           |
| ľ                 | 07/25/21             | 23.5           | 99              | < 0.001              | 56                        | < 0.050           | 35.7            | 102.0              |                 | 1,060            | < 0.05               |                           |                               |                                 |                           |
| ľ                 | 07/25/22             | 26.2           | 113             | < 0.001              | 59                        | < 0.050           | 52.8            | 202.0              |                 | 526              | 0.08                 |                           |                               |                                 |                           |
| ľ                 | 08/11/22             | 9.2            | 40              | < 0.001              | 22                        | < 0.050           | 27.8            | 256.0              |                 | 666              | 1.29                 |                           |                               |                                 |                           |
| ľ                 | 06/16/23             | 12.9           | 48              | < 0.001              | 103                       | < 0.050           | 34.7            | 231.0              |                 | 353              | 0.12                 |                           |                               |                                 |                           |
| -                 | 09/01/23             | 9.7            | 42              | < 0.001              | 19                        | < 0.050           | < 20.0          | 251.0              |                 | 731              | 3.54                 |                           |                               |                                 |                           |
|                   |                      |                | 165             | < 0.001              | 41                        | < 0.050           | 32.35           | 178                | 87.5            | 443.0            | 0.13                 | < 1                       | 1                             | 1                               | < 0.1                     |
| ł                 | Median               |                |                 |                      |                           |                   |                 |                    |                 |                  |                      |                           |                               |                                 |                           |
| ŀ                 | Median<br>Maximum    | 36.1<br>1,020  | 1,300           | < 0.001              | 131                       | < 0.050           | 263             | 990                | 180             | 5,200            | 3.540                | 4                         |                               |                                 | < 0.1                     |

| Location                    | Date                 | Fecal<br>Coliform      | Fecal*<br>Coliform | Fecal**<br>Coliform | Fecal<br>Strep.      | Fecal*<br>Strep. | Fecal**<br>Strep. | E. Coli            | Salmonella         |              | VOC                                                                   |          | Pesticides       |   | SOC                      | н | erbicides     |
|-----------------------------|----------------------|------------------------|--------------------|---------------------|----------------------|------------------|-------------------|--------------------|--------------------|--------------|-----------------------------------------------------------------------|----------|------------------|---|--------------------------|---|---------------|
|                             |                      | MPN/100 mL             | MPN/100 mL         | MPN/100 mL          | MPN/100 mL           | MPN/100 mL       | MPN/100 mL        | MPN/100mL          | MPN/100 mL         |              | # of detects                                                          |          | # of detects     |   | # of detects             |   | of detects    |
|                             | 04/02/97             | 7,500<br>1.600.000     |                    |                     | 90,000<br>1,600,000  |                  |                   |                    | < 2.0              |              |                                                                       | 1        |                  |   |                          | 4 |               |
|                             | 07/28/97<br>02/04/98 | 8,000                  |                    |                     | 28,000               |                  |                   |                    | < 2.2<br>< 2.2     |              |                                                                       | 2        |                  |   |                          | 1 |               |
|                             | 02/24/98             | 2,400                  |                    |                     | 8,000                |                  |                   |                    | < 2.2              |              |                                                                       | 1        |                  |   |                          | 1 | -             |
|                             | 04/24/99             | 2,100                  |                    |                     | 0,000                |                  |                   |                    | S 2.2              | 1            | а                                                                     | 0        |                  |   |                          | 1 | hh            |
|                             | 04/30/99             |                        |                    |                     |                      |                  |                   |                    |                    | 2            | a,ff                                                                  | 0        |                  |   |                          | 1 | hh            |
|                             | 02/21/00             |                        |                    |                     |                      |                  |                   |                    |                    | 1            | a                                                                     |          |                  |   |                          | 0 |               |
|                             | 10/23/00             |                        |                    |                     |                      |                  |                   |                    |                    |              |                                                                       | 0        |                  |   |                          | 0 |               |
|                             | 02/26/01<br>11/24/01 | 2,200                  |                    |                     | 220,000              |                  |                   |                    |                    | 1            | a                                                                     | 0        |                  |   |                          | 0 |               |
|                             | 09/11/02             | 300,000                |                    |                     | 500,000              |                  |                   |                    |                    | 1            | a                                                                     | 0        |                  |   |                          | 0 |               |
|                             | 02/12/03             | 500,000                |                    |                     | 22,000               |                  |                   |                    |                    | 1            | а                                                                     | 0        |                  | 4 | g,j,o,x                  | 0 |               |
|                             | 02/25/03             | 30,000                 |                    |                     | 30,000               |                  |                   |                    |                    | 0            |                                                                       | 0        |                  |   | 0.0                      |   |               |
|                             | 07/19/03             |                        |                    |                     |                      |                  |                   |                    |                    | 1            |                                                                       | 0        |                  | 0 |                          | 0 |               |
|                             | 02/21/04<br>11/09/04 | 1,600                  |                    |                     | 33,000<br>5,000      |                  |                   |                    |                    | 1            | a                                                                     | 0        |                  | 0 |                          | 0 |               |
|                             | 01/04/05             | 500                    |                    |                     | 28,000               |                  |                   |                    |                    | 3            | d,dd,ee                                                               | 0        |                  | 2 | g,k                      | 0 |               |
|                             | 07/24/05             | 1.600.000              |                    |                     | 170.000              |                  |                   |                    |                    | 2            | a,k                                                                   | 0        |                  | 0 | g,ĸ                      | 2 | hh,uu         |
|                             | 10/05/06             | 300,000                |                    |                     | 50,000               |                  |                   |                    |                    | 14           |                                                                       | 1        | c,m,ii,jj,kk,ll  | 0 |                          | 1 | ,             |
|                             | 01/05/08             | 3,000                  |                    |                     | 28,000               |                  |                   |                    |                    | 14           |                                                                       | 0        |                  | 1 |                          | 0 |               |
|                             | 08/07/08             | 100                    |                    |                     |                      |                  |                   |                    |                    | 7            |                                                                       | 2        |                  | 1 |                          | 1 |               |
|                             | 11/26/08<br>12/17/08 | 130<br>14,000          |                    |                     | 900<br>90,000        |                  |                   |                    |                    | 5            |                                                                       | 0        |                  | 2 |                          | 2 |               |
| 1 H                         | 02/07/09             | 14,000                 |                    |                     | 90,000               |                  |                   |                    |                    | 10           |                                                                       | 2        |                  | 2 |                          | 1 |               |
|                             | 07/22/09             | 160,000,000            |                    |                     | 700,000              |                  |                   |                    |                    | 0            |                                                                       | 1        |                  | 1 |                          | 0 |               |
|                             | 01/20/10             | 28,000                 |                    |                     | 8,000                |                  |                   |                    |                    | 6            |                                                                       | 0        |                  | 2 |                          | 0 |               |
|                             | 02/06/10             | 70,000                 |                    |                     | 90,000               |                  |                   |                    |                    | 6            |                                                                       | 0        |                  | 1 |                          | 0 |               |
|                             | 04/22/10             | > 16,000               |                    |                     | 30,000               |                  |                   |                    |                    | 0            |                                                                       | 0        |                  | 0 |                          | 0 |               |
|                             | 10/17/10<br>12/20/10 | 16,000,000             |                    |                     | 600,000<br>50,000    |                  |                   |                    |                    | 11<br>5      | a,b,pp,qq,rr,ss,<br>d,ee,qq,vv,bbb                                    | 1        | gg               | 3 | h,j,o                    | 1 | ccc           |
|                             | 12/22/10             | 300,000                |                    |                     | < 16,000             |                  |                   |                    |                    | 5            | 4,00,44,77,000                                                        | 0        |                  | 0 |                          | 0 |               |
|                             | 03/21/11             | < 16,000               |                    |                     | 170                  |                  |                   |                    |                    | 5            | a, d, vv, qq, bbb                                                     | 1        | gg               | 1 | 0                        |   |               |
|                             | 09/11/11             | 2,100,000              |                    |                     | 900,000              |                  |                   |                    |                    | 7            | a,b,qq,pp,tt,vv,zz                                                    | 1        | gg               | 0 |                          | 0 |               |
|                             | 10/03/11             | 330,000                |                    |                     | 70,000               |                  |                   |                    |                    | 10           | a,b,e,pp,qq,vv,aaa,bbb                                                | 0        |                  | 0 |                          | 0 |               |
|                             | 03/17/12<br>07/23/12 | 50,000<br>2,200,000    |                    |                     | 3,300,000<br>230,000 |                  |                   |                    |                    | 11<br>6      | a,b,d,ff,gg,ss,vv,zz,aaa,bbb,ggg<br>b, ff, pp, qq, vv, bbb            | 0        | gg, zz           | 0 | x                        | 0 | 111           |
| Las Vegas Wash              | 07/23/12<br>07/31/12 | 2,200,000              |                    |                     | 230,000<br>NA        |                  |                   |                    |                    | 10           | a, b, ff, qq, ss, vv, bbb, ggg, hhh, iii                              | 1        | gg, zz<br>gg     | 1 | i                        | 0 |               |
| @ The Club at               | 08/12/12             | 1,700,000              |                    |                     | NA                   |                  |                   |                    |                    | 8            | a, b, ff, pp, qq, ss, vv, bbb                                         | 1        | gg               | 2 | h, j                     | 0 |               |
| Sunrise (Formerly           | 08/18/12             | 130,000                |                    |                     | 540,000              |                  |                   |                    |                    |              | NA                                                                    |          | NA               |   | NA                       |   | NA            |
| known as Desert             | 08/30/12             | 1,700,000              |                    |                     | 35,000               |                  |                   |                    |                    |              | NA                                                                    |          | NA               |   | NA                       |   | NA            |
| Rose Golf Course)<br>(USGS) | 01/26/13             | 17,000                 |                    |                     | 260,000              |                  |                   |                    |                    | 0            | NA                                                                    | 2        | NA               | 6 | NA                       |   | NA            |
| (0565)                      | 07/19/13<br>08/18/13 | > 241,960<br>> 241,960 |                    |                     | 72,700 2,160         |                  |                   |                    |                    | 9<br>7       | a, b, qq, vv, ddd, nnn, ooo, ppp, qqq<br>a, b, qq, vv, hhh, yyy, bbbb | 2        | gg, zz           | 2 | h,j,o,x, aaaa<br>h. aaaa | 1 | mmm<br>mmm    |
|                             | 08/25/13             | > 241,960              |                    |                     | 2,100                |                  |                   |                    |                    | /            | A, D, qq, VV, IIIII, yyy, DDDD<br>NA                                  | 2        | NA               | 2 | NA                       | 1 | NA            |
| l l                         | 11/21/13             | 5,040                  |                    |                     | 24,066               |                  |                   |                    |                    | 9            | a, b, pp, qq, vv, bbb, ggg, hhh, iii,                                 | 5        |                  | 6 | h, j, o, x, www, aaaa    | 3 | hh, rrr, xxx  |
|                             | 08/04/14             |                        |                    |                     |                      |                  | -                 |                    |                    |              |                                                                       |          |                  |   |                          |   |               |
|                             | 08/20/14             |                        |                    | San                 | nples not Taken di   | ue to Las Vegas  | Channel Improve   | ements, Sloan Char | inel to Bonanza Ro | oad an       | d Flamingo Wash below Nellis Boulevar                                 | rd Impi  | rovement Project |   |                          |   |               |
|                             | 09/08/14<br>01/11/15 | 3,830                  |                    |                     | 6,270                |                  |                   |                    |                    | 8            | a, b, bbb, qq, vv, qqq, yyy, eeee                                     | 2        | gg, dddd         | 6 | h, i, j, o, www, aaaa    | 1 | hh            |
|                             | 01/30/15             | 2,210                  |                    |                     | 6,510                |                  |                   |                    |                    | 0            | a, b, bbb, qq, vv, qqq, yyy, eece                                     | 0        | 55, uuuu         | 0 | ii, i, j, ö, www, aaaa   | 0 |               |
| l l                         | 03/02/15             | 860                    |                    |                     | 20,140               |                  |                   |                    |                    | 7            | a, b, qq, ss, vv, bbb, iii                                            | 2        | gg, dddd         | 6 | h, j, n, o, x, www       | 3 | hh, rrr, cccc |
|                             | 07/06/15             | > 241,960              |                    |                     | 92,080               |                  |                   |                    |                    | 4            | a,b,qq,vv                                                             | 1        | gg               | 4 | ssss, www, h,zz          | 1 | hh            |
| 1 I                         | 10/05/15             | 120,330                |                    |                     | 113,700              |                  |                   |                    |                    |              |                                                                       | <b> </b> |                  | 2 |                          |   |               |
|                             | 04/09/16<br>04/28/16 | 123,400<br>92,080      |                    |                     | 16,160<br>6,630      |                  |                   |                    |                    | 6            | a, b, zzz, qq, ss, bbb                                                |          |                  | 2 | o, h                     | 1 | hh            |
| 1 F                         | 04/28/16<br>05/06/16 | 298,700                |                    |                     | 8,200                |                  |                   |                    |                    | 6            |                                                                       | 2        |                  | 2 |                          | 1 |               |
|                             | 08/04/16             | 198,630                |                    |                     | 15,531               |                  |                   |                    |                    | 2            |                                                                       | 0        |                  | 1 |                          | 1 |               |
|                             | 08/23/16             | 1,299,700              |                    |                     | 30,000               |                  |                   |                    |                    | 3            |                                                                       | 0        |                  | 1 |                          | 1 |               |
|                             | 12/22/16             | 59,600                 |                    |                     | 29,800               |                  |                   |                    |                    | 1            |                                                                       | 0        |                  | 2 |                          | 2 |               |
|                             | 01/20/17<br>02/18/17 | 241,960<br>23,600      |                    |                     | < 1<br>530           |                  |                   |                    |                    | <del> </del> |                                                                       |          |                  |   |                          |   |               |
| 1 F                         | 07/17/17             | > 2,419,600            |                    |                     | 12,030               |                  |                   |                    |                    | 1            | NA                                                                    | 1        | NA               |   | NA                       |   | NA            |
| 1                           | 07/25/17             | 1,080                  |                    |                     | 5,200                |                  |                   |                    |                    | 2            | ~                                                                     | 0        | ~                | 2 | ~                        | 1 | ~             |
| [                           | 01/09/18             | 7,710                  |                    |                     | 2,590                |                  |                   |                    |                    | 2            | ~                                                                     | 0        | ~                | 5 | ~                        | 0 | ~             |
|                             | 07/15/18<br>01/14/19 | > 241,960<br>5.120     |                    |                     | 23,820<br>> 2,420    | L                |                   |                    |                    | 2            |                                                                       | 0        |                  | 3 |                          | 0 |               |
| 1 H                         | 01/14/19<br>02/14/19 | 2,420                  |                    |                     | > 2,420<br>5,910     |                  |                   |                    |                    | 1            |                                                                       | 0        |                  | 3 |                          | 0 |               |
| 1 H                         | 11/20/19             | 24,196                 | 1                  |                     | 19,863               |                  | 1                 | 1                  | 1                  | 1            |                                                                       | 1        |                  | 4 |                          | 1 |               |
|                             | 11/28/19             | > 2,420                |                    |                     | > 2,420              |                  |                   |                    |                    | 1            |                                                                       | 1        |                  | 1 |                          | 1 |               |
| [                           | 03/11/20             | 5,475                  |                    |                     | 10,462               |                  |                   |                    |                    | 2            |                                                                       | 1        |                  | 0 |                          | 1 |               |
|                             | 07/25/21             | > 48,392               |                    |                     | 48,392               |                  |                   |                    |                    | 2            |                                                                       | 0        |                  | 2 |                          | 2 |               |
|                             | 07/25/22             | > 24,196               |                    |                     | 375                  |                  |                   |                    |                    | 0            |                                                                       | 0        |                  | 2 |                          | 0 |               |
|                             | 08/11/22<br>06/16/23 | 58,100<br>435,200      |                    |                     | 15,200<br>6,100      |                  |                   | 172.000            |                    | 2            |                                                                       | 0        |                  | 0 |                          | 0 |               |
|                             | 09/01/23             | > 241,960              | 1                  |                     | 23,820               |                  | l                 | 32,600             | 1                  | 1            |                                                                       | 0        |                  | 0 |                          | 0 |               |
|                             | Median               | 58,850                 |                    |                     | 23,820               |                  |                   | 102,300            | < 2.2              | 2            |                                                                       | 0        |                  | 2 |                          | 1 |               |
|                             | Maximum              | 160,000,000            |                    |                     | 3,300,000            |                  |                   | 172,000            | < 2.2              | 14           |                                                                       | 5        |                  | 7 |                          | 4 |               |
|                             | Minimum              | 130                    |                    |                     | < 1                  |                  |                   | 32,600             | < 2.0              | 0            |                                                                       | 0        |                  | 0 |                          | 0 |               |

| Location                            | Date                 | Q   | Temp   | Oil &<br>Grease | TSS             | TDS            | Specific<br>Conductance | Lab<br>pH    | Surfactants<br>(MBAS) | Ortho-<br>Phosphate | Total<br>Phosphorous | NO3-N        | NO-2               | NH3-N            |
|-------------------------------------|----------------------|-----|--------|-----------------|-----------------|----------------|-------------------------|--------------|-----------------------|---------------------|----------------------|--------------|--------------------|------------------|
|                                     | 02/12/02             | cfs | Deg. C | mg/L            | mg/L            | mg/L           | umho/cm                 | units        | mg/L                  | mg/L                | mg/L                 | mg/L         | mg/L               | mg/L             |
|                                     | 02/12/03 12/28/04    | 560 |        | < 5.0           | 11,100<br>1,970 | 1,160          | 1,650<br>1,560          | 7.50         | < 0.05                | 3.00<br>0.49        | 4.30<br>2.30         | 5.0          | 0.520              |                  |
|                                     | 02/11/05             |     |        | < 5.0           | 1,370           | 910            | 1,290                   | 7.60         | 0.09                  | 0.49                | 0.67                 | 4.7          | < 0.050            |                  |
|                                     | 10/25/05             |     |        | < 5.0           | 2,480           | 590            | 1,290                   | 7.00         | 0.09                  | 0.58                | 2.40                 | 4.0          | 1.900              |                  |
|                                     | 10/14/06             |     |        |                 | 3,600           | 1,250          | 1,720                   | 7.30         | < 0.05                | 0.13                | 1.30                 | 3.4          | 0.620              |                  |
|                                     | 04/16/07             |     |        |                 | 78              | 1,730          | 2,460                   | 8.30         | < 0.05                | 0.15                | 0.15                 | 14.0         | < 1.000            |                  |
|                                     | 07/24/07             |     |        | 1.7             | 178             | 1,420          | 1,930                   | 7.40         | 0.62                  | 0.13                | 0.13                 | 8.4          | < 0.500            |                  |
|                                     | 08/01/07             |     |        | < 5.0           | 74              | 1,430          | 1,900                   | 8.00         | < 0.05                | 0.14                | 0.14                 | 12.0         | < 1.000            |                  |
|                                     | 08/27/07             |     |        | 2.9             | 3,140           | 732            | 1,030                   | 7.50         | 0.11                  | 1.40                | 2.20                 | 2.8          | < 0.500            |                  |
|                                     | 09/22/07             |     |        | 2.1             | 1,440           | 574            | 838                     | 7.60         | < 0.05                | 1.30                | 1.90                 | 2.9          | < 0.200            |                  |
|                                     | 01/27/08             |     |        | < 5.0           | 98              | 1,620          | 2,260                   | 7.50         | < 0.05                | 0.26                | 0.26                 | 45.0         | < 0.001            |                  |
|                                     | 08/07/08             |     |        | 1.4             | 6,540           | 2,560          | 2,820                   | 7.50         | 0.04                  | 2.60                | 2.60                 | 7.4          | < 0.500            |                  |
|                                     | 11/26/08             |     |        | 4.9             | 1,020           | 1,150          | 1,720                   | 7.40         | 0.16                  | 0.47                | 0.77                 | 7.6          | < 0.500            |                  |
|                                     | 02/07/09             |     |        | 1.9             | 206             | 1,050          | 1,450                   | 7.60         | 0.09                  | 0.39                | 0.42                 | 6.7          | < 0.100            |                  |
|                                     | 01/20/10             |     |        | 5.3             | 540             | 910            | 1,400                   | 7.30         | < 0.05                | 0.59                | 0.59                 | 8.8          | < 0.130            |                  |
|                                     | 01/27/10             |     |        | < 5.0           | 430             | 1,400          | 2,000                   | 7.00         | 0.12                  | 0.30                | 0.31                 | 12.0         | < 0.130            |                  |
|                                     | 02/06/10<br>02/22/10 |     |        | < 4.8<br>< 4.8  | 240<br>120      | 1,500<br>1,500 | 2,100                   | 7.10         | 0.09                  | 0.27                | 0.39                 | 13.0<br>13.0 | < 0.130            |                  |
|                                     | 12/20/10             |     |        | < 4.8           | 120             | 1,500          | 1,800                   | 7.10         | 0.16                  | 0.06                | 0.20                 | 13.0         | < 0.050            |                  |
|                                     | 12/20/10             |     |        | < 5.0           | 4,000           | 460            | 1,000                   | 7.10         | 0.16                  | 1.60                | 1.90                 | 11.0         | < 0.050            | 0.06             |
|                                     | 07/03/11             |     |        | < 5.0           | 3,800           | 2,200          | 2,600                   | 7.40         | < 0.05                | 0.14                | 2.70                 | 4.2          | 1.500              | 0.00             |
|                                     | 09/13/11             |     |        | < 5.0           | 630             | 1,000          | 1,400                   | 7.60         | 0.03                  | 0.14                | 0.84                 | 3.7          | < 0.250            |                  |
|                                     | 10/03/11             |     |        | < 5.0           | 420             | 1,200          | 1,800                   | 7.60         | 0.13                  | 0.10                | 0.52                 | 8.0          | < 0.250            |                  |
|                                     | 07/16/12             |     |        | < 4.9           | 150             | 980            | 1,400                   | 7.40         | 0.09                  | 0.09                | 0.57                 | 7.6          | < 0.250            |                  |
|                                     | 07/31/12             |     | -      | 5.2             | 150             | 1,400          | NA                      | 8.10         | 0.48                  | 0.09                | 0.24                 | 11.0         | < 0.250            |                  |
|                                     | 08/22/12             |     |        | < 4.8           | 2,800           | 1,200          | 1,600                   | 7.70         | < 0.05                | 0.10                | 3.40                 | 2.6          | < 0.250            |                  |
|                                     | 09/11/12             |     |        | < 4.9           | 12,000          | 1,000          | 1,300                   | 7.70         | 0.26                  | 0.10                | 1.80                 | 3.4          | < 0.250            |                  |
|                                     | 10/11/12             |     |        | < 4.9           | 1,200           | 1,200          | NA                      | 7.60         | < 0.05                | 0.05                | 1.20                 | 8.9          | < 0.130            |                  |
|                                     | 01/26/13             |     |        | 5.1             | 370             | 1,300          | NA                      | 7.90         | 0.12                  | 0.46                | 0.50                 | 9.2          | < 0.130            |                  |
|                                     | 07/19/13             |     |        | 5.1             | 2,585           | 1,175          | 1,723                   | 7.45         | 0.26                  | < 0.01              | 1.10                 | 3.0          | < 0.100            | 0.37             |
|                                     | 08/18/13             |     |        | 5.1             | 153             | 1,330          | 1,784                   | 8.01         | < 0.20                | 0.10                | 0.51                 | 7.0          | < 0.100            | < 0.10           |
| Lake Las Vegas & Rainbow Gardens    | 08/25/13             |     |        | 5.1             | 1,003           | NA             | NA                      | 7.81         | NA                    | 0.11                | 0.74                 | 6.6          | < 0.100            | < 0.10           |
| *LLV Ends 2009-2010 RG Starts 2010- | 11/21/13             |     |        | < 5.0           | 860             | 695            | 1,158                   | 7.51         | 0.68                  | 0.12                | 0.61                 | 3.6          | < 0.100            | 0.70             |
| 2012                                | 08/04/14             |     |        | 5.7             | 548             | 1,140          | 1,766                   | 7.97         | 0.14                  | 0.10                | 0.55                 | 10.8         | < 0.100            | < 0.10           |
|                                     | 08/20/14 09/08/14    |     |        | < 5.0<br>6.7    | 260<br>850      | 1,125<br>915   | 1,610<br>1,375          | 7.98         | < 0.10 0.30           | 0.08                | 0.73                 | 8.5<br>7.4   | < 0.100<br>< 0.100 | < 0.10<br>< 0.10 |
|                                     | 09/08/14             |     |        | < 5.0           | 295             | 1.345          | 1,375<br>NA             | 7.13<br>7.84 | 0.30                  | 0.08                | 0.48                 | 9.9          | < 0.100            | < 0.10           |
|                                     | 01/30/15             |     |        | < 5.0           | 110             | 1,343          | NA                      | 7.90         | < 0.10                | 0.06                | 0.48                 | 10.8         | < 0.100            | < 0.10           |
|                                     | 03/02/15             |     |        | < 5.0           | 120             | 1,290          | NA                      | 7.80         | 0.11                  | 0.07                | 0.07                 | 11.0         | < 0.100            | 0.14             |
|                                     | 07/06/15             |     |        | 10.0            | 365             | 1,100          | 1,686                   | 7.14         | < 0.10                | 0.06                | 0.38                 | 7.8          | < 0.100            | < 0.10           |
|                                     | 10/05/15             |     |        | < 5.0           | 725             | 1,260          | NA                      | 6.90         | 0.40                  | 0.11                | 0.99                 | 4.8          | < 0.100            | 0.45             |
|                                     | 01/31/16             |     |        | < 5.0           | 45              | 1,260          | 2,010                   | 7.86         | 0.32                  | 0.09                | 0.48                 | 10.3         | < 0.100            | 0.28             |
|                                     | 04/09/16             |     |        | < 5.0           | 175             | 1,390          | · · ·                   | 7.41         | 0.10                  | 0.04                | 0.36                 | 10.5         | < 0.100            | < 0.10           |
|                                     | 04/28/16             |     |        |                 |                 |                |                         |              | 1                     |                     |                      |              |                    |                  |
|                                     | 08/04/16             |     |        | 5.0             | 155             | 980            |                         | 7.66         | 0.26                  | 0.24                | 0.36                 | 9.4          | < 0.100            | 0.12             |
|                                     | 08/23/16             |     |        | < 5.0           | 525             | 955            |                         | 7.51         | 0.14                  | N/A                 | N/A                  | 6.7          | < 0.100            | 0.25             |
|                                     | 12/22/16             |     |        | < 5.0           | 92              | 1,090          |                         | 7.73         | 0.24                  | 0.12                | 0.20                 | 10.3         | < 0.100            | 0.15             |
|                                     | 01/20/17             |     |        | < 5.0           | 166             | 1,100          |                         | 8.48         | 0.26                  | 0.14                | 0.31                 | 9.5          | < 0.100            | 0.12             |
|                                     | 02/18/17             |     |        | 9.7             | 492             | 270            |                         | 7.33         | 0.57                  | 0.15                | 0.60                 | 1.2          | < 0.100            | 0.28             |
|                                     | 07/17/17             |     |        | 5.3             | < 5.0           | 1,380          | NA                      | 7.56         | 0.23                  | 0.10                | 0.16                 | 7.4          | < 0.1              | < 0.10           |
|                                     | 08/04/17             |     |        | 2.2             | 21              | 1,240          | ~                       | 7.80         | 0.21                  | 0.11                | 0.13                 | < 0.1        | < 0.1              | < 0.10           |
|                                     | 01/09/18             |     |        | < 5.0           | 775             | 1,020          | ~                       | 7.70         | < 0.069               | 0.15                | 0.97                 | 7.2          | < 0.1              | 0.74             |
|                                     | 07/15/18             |     |        | < 5.0           | 145<br>1,180    | 1,100          | NA<br>NA                | 7.57<br>7.23 | < 0.10 0.10           | < 0.05<br>0.08      | 0.28                 | 8.65<br>2.38 | < 0.100<br>< 0.100 | 0.19 0.60        |
|                                     | 02/14/19<br>11/20/19 |     |        | 5.4<br>< 5.0    | 1,180           | 475<br>995     | NA<br>NA                | 7.23         | 0.10                  | 0.08                | 0.79                 | 5.79         | < 0.100            | 0.60             |
|                                     | 11/20/19             |     |        | < 5.0           | 105             | 995<br>790     | NA                      | 7.33         | 0.55                  | 0.24                | 0.77                 | 5.79         | < 0.100            | 0.55             |
|                                     | 03/11/20             |     |        | < 5.0           | 92              | 605            | NA                      | 7.33         | 0.19                  | 0.20                | 0.40                 | 4.47         | < 0.100            | 0.80             |
|                                     | 07/26/21             |     | NA     | < 5.0           | 2,600           | 1,020          | NA                      | 7.08         | 0.07                  | 0.20                | 1.98                 | 6.20         | < 0.100            | 1.01             |
|                                     | 07/25/22             |     | NA     | 5.7             | 125             | 1,020          | NA                      | 7.91         | 0.29                  | < 0.05              | 0.35                 | 9.78         | < 0.100            | 0.33             |
|                                     | 08/12/22             |     | NA     | 6.8             | 786             | 690            | NA                      | 7.52         | 0.63                  | 0.30                | 2.22                 | 4.97         | < 0.100            | 1.06             |
|                                     | 06/16/23             |     | 25.3   | < 5.0           | 268             | 940            | NA                      | 6.90         | 0.88                  | < 0.05              | 0.77                 | 6.26         | 0.408              | 1.10             |
|                                     | 09/01/23             |     | 27.1   | 7.6             | 680             | 335            | NA                      | 8.03         | 0.28                  | 1.23                | 1.56                 | 2.89         | 0.240              | 0.52             |
|                                     | Median               | 560 | 26.2   | < 5.0           | 420             | 1,123          | 1,720                   | 7.57         | 0.125                 | 0.130               | 0.58                 | 7.39         | < 0.100            | 0.19             |
|                                     | Maximum              | 560 | 27.1   | 10              | 12,000          | 2,560          | 2,820                   | 8.48         | 0.88                  | 3.0                 | 4.30                 | 45.0         | 1.900              | 1.10             |
|                                     | Minimum              | 560 | 25.3   | 1.4             | < 5             | 270            | 838                     | 6.90         | < 0.035               | < 0.010             | 0.074                | < 0.10       | < 0.001            | 0.06             |

| Location                           | Date                 | TKN    | Total<br>Nitrogen | Copper      | Dissolved<br>Copper | Chromium      | Lead             | Dissolved<br>Lead    | Mercury              | Cadmium                | Zinc      | Dissoly<br>Zine |
|------------------------------------|----------------------|--------|-------------------|-------------|---------------------|---------------|------------------|----------------------|----------------------|------------------------|-----------|-----------------|
|                                    |                      | mg/L   | mg/L              | mg/L        | mg/L                | mg/L          | mg/L             | mg/L                 | mg/L                 | mg/L                   | mg/L      | mg/l            |
|                                    | 02/12/03             | 9.6    | 15.14             | 0.082       |                     | 0.0430        | 0.0920           |                      | < 0.0002             | < 0.00250              | 0.35      |                 |
|                                    | 12/28/04             | 5.5    | 10.60             | < 0.010     | < 0.010             | 0.0330        | 0.0500           | < 0.0200             | < 0.0002             | < 0.00500              | 0.27      | < 0.0           |
|                                    | 02/11/05             | 2.3    | 6.90              | 0.041       | < 0.010             | 0.0230        | 0.0310           | < 0.0200             | < 0.0002             | 0.61000                | 0.17      | < 0.0           |
|                                    | 10/25/05             |        |                   | 0.056       | 0.014               | 0.0570        |                  | 0.1090               |                      |                        | 0.21      | 0.1             |
|                                    | 10/14/06             | 2.3    |                   | 0.120       | 0.007               | 0.0700        | 0.1300           | 0.0005               | < 0.0002             | 0.00120                | 0.45      | < 0.0           |
|                                    | 04/16/07             | 1.0    |                   | 0.150       | 0.011               | 2.5000        | 0.0016           | < 0.0005             | < 0.0002             | < 0.00050              | 0.09      | 0.0             |
|                                    | 07/24/07             | 1.4    |                   | 0.026       | 0.015               | 0.0031        | 0.0041           | < 0.0005             | < 0.0002             | < 0.00050              | 0.08      | 0.0             |
|                                    | 08/01/07             | 1.1    |                   | 0.023       | 0.022               | 0.0025        | 0.0031           | 0.0029               | < 0.0002             | < 0.00050              | 0.06      | 0.0             |
|                                    | 08/27/07             | 5.0    |                   | 0.006       | 0.008               | 0.0240        | < 0.0005         | < 0.0005             | < 0.0002             | < 0.00050              | 0.17      | < 0.0           |
|                                    | 09/22/07             | 4.3    |                   | 0.051       | 0.011               | 0.0280        | 0.0160           | < 0.0005             | < 0.0002             | < 0.01000              | 0.17      | < 0.0           |
|                                    | 01/27/08             | 1.8    |                   | 0.003       | 0.006               | 0.0027        | 0.0016           | < 0.0005             | < 0.0002             | < 0.00050              | 0.05      | 0.0             |
|                                    | 08/07/08             | 6.5    |                   | 0.027       | 0.008               | 0.0140        | 0.0180           | < 0.0005             | < 0.0002             | < 0.00100              | 0.12      | < 0.0           |
|                                    | 11/26/08             | 5.6    |                   | 0.034       | 0.011               | 0.0067        | 0.0100           | < 0.0005             | < 0.0002             | < 0.00050              | 0.05      | 0.0             |
|                                    | 02/07/09             | 2.0    | 10.02             | 0.022       | 0.005               | 0.0047        | 0.0120           | < 0.0005             | < 0.0002             | < 0.00052              | 0.21      | < 0.0           |
|                                    | 01/20/10             | 2.0    | 10.93             | 0.036       | 0.011               | 0.0081        | 0.0140           | < 0.0005             | < 0.0002             | < 0.00050              | 0.11      | < 0.0           |
|                                    | 01/27/10<br>02/06/10 | 2.1    | 14.23<br>14.53    | 0.021 0.018 | 0.008               | 0.0083 0.0051 | 0.0068 0.0035    | < 0.0005<br>< 0.0005 | < 0.0002<br>< 0.0002 | < 0.00050<br>< 0.00050 | 0.07      | < 0.0           |
|                                    | 02/08/10             | 1.4    | 14.55             | 0.018       | 0.008               | 0.0031<br>NA  | 0.0033           | < 0.0005             | < 0.0002<br>NA       | < 0.00030<br>NA        | 0.06      | 0.0             |
|                                    | 12/20/10             | 1.0    | 12.25             | 0.013       | 0.007               | 0.0038        | 0.0017           | < 0.0005             | < 0.0002             | NA < 0.00050           | 0.06      | < 0.0           |
|                                    | 12/20/10             | 2.4    | 4.20              | 0.011       | 0.005               | 0.0038<br>NA  | 0.0040           | < 0.0005             | < 0.0002<br>NA       | < 0.00050<br>NA        | 0.04      | < 0.            |
|                                    | 07/03/11             | 6.2    | 4.20              | 0.031       | 0.002               | 0.0330        | 0.0230           | < 0.0005             | < 0.0002             | 0.00006                | 0.12      | < 0.0           |
|                                    | 09/13/11             | 3.5    | 7.45              | 0.100       | 0.004               | 0.0330        | 0.0470           | < 0.0005             | < 0.0002             | < 0.00050              | 0.17      | < 0.            |
|                                    | 10/03/11             | 2.4    | 10.65             | 0.032       | 0.015               | 0.0092        | 0.0078           | < 0.0005             | < 0.0002             | < 0.00050              | 0.08      | < 0.            |
|                                    | 07/16/12             | 1.7    | 9.55              | 0.010       | 0.006               | 0.0033        | 0.0078           | < 0.0005             | < 0.0002             | < 0.00050              | 0.03      | < 0.            |
|                                    | 07/31/12             | 0.9    | 12.17             | 0.011       | 0.008               | NA            | 0.0022           | < 0.0005             | NA                   | NA                     | 0.03      | < 0.            |
|                                    | 08/22/12             | 4.9    | 12117             | 0.032       | 0.006               | 0.0250        | 0.0350           | < 0.0005             | < 0.0002             | < 0.00050              | 0.10      | 0.              |
|                                    | 09/11/12             | 2.6    |                   | 0.170       | < 0.002             | 0.1100        | 0.1400           | < 0.0005             | < 0.0002             | 0.00240                | 0.62      | < 0.            |
|                                    | 10/11/12             | 2.9    |                   | 0.034       | 0.005               | NA            | 0.0180           | < 0.0005             | NA                   | NA                     | 0.14      | < 0.0           |
|                                    | 01/26/13             | 1.6    |                   | 0.013       | 0.004               | NA            | 0.0047           | < 0.0005             | NA                   | NA                     | 0.07      | < 0.            |
|                                    | 07/19/13             | 24.5   | 27.62             | 0.218       | 0.013               | 0.0542        | 0.0553           | < 0.0005             | < 0.0002             | 0.00176                | 0.43      | 0.              |
|                                    | 08/18/13             | 3.5    | 10.57             | 0.034       | 0.021               | 0.0041        | 0.0027           | < 0.0005             | < 0.0002             | < 0.00100              | 0.05      | 0.              |
| Lake Las Vegas & Rainbow Gardens   | 08/25/13             | 3.5    | 10.21             | 0.052       | 0.013               | NA            | 0.0162           | < 0.0010             | NA                   | NA                     | 0.15      | 0.              |
| LLV Ends 2009-2010 RG Starts 2010- | 11/21/13             | < 1.0  | 4.69              | 0.069       | 0.014               | 0.0207        | 0.0249           | < 0.0005             | < 0.0002             | < 0.00100              | 0.17      | 0.0             |
| 2012                               | 08/04/14             | < 1.0  | 11.90             | 0.048       | 0.012               | 0.0137        | 0.0122           | < 0.0005             | < 0.0002             | < 0.00100              | 0.12      | 0.              |
|                                    | 08/20/14             | < 1.0  | 9.56              | 0.043       | 0.015               | 0.0085        | 0.0082           | < 0.0005             | < 0.0002             | < 0.00100              | 0.07      | 0.              |
|                                    | 09/08/14             | 1.3    | 8.76              | 0.051       | 0.010               | 0.0173        | 0.0143           | < 0.0005             | < 0.0002             | < 0.00100              | 0.13      | 0.              |
|                                    | 01/11/15             | 0.7    | 10.67             | 0.020       | 0.018               | NA            | 0.0030           | < 0.0005             | NA                   | NA                     | 0.06      | 0.              |
|                                    | 01/30/15             | 0.5    | NA                | 0.014       | 0.009               | NA            | 0.0020           | < 0.0005             | NA                   | NA                     | 0.05      | 0.0             |
|                                    | 03/02/15             | 1.2    | NA                | 0.023       | 0.016               | NA            | 0.0023           | < 0.0005             | NA                   | NA                     | 0.06      | 0.              |
|                                    | 07/06/15             | < 0.2  | < 0.2             | 0.030       | 0.016               | 0.0020        | 0.0110           | < 0.0005             | 0.0019               | < 0.00050              | 0.20      | 0.              |
|                                    | 10/05/15             | 5.3    | NA                | 0.019       | 0.016               | NA            | 0.0150           | 0.0010               | < 0.0002             | NA                     | 0.06      | 0.              |
|                                    | 01/31/16             | 1.5    | 1.19              | 0.021       | 0.019               | 0.0010        | < 0.0005         | < 0.0005             | < 0.0002             | < 0.00100              | 0.05      | 0.              |
|                                    | 04/09/16             | 1.3    |                   | 0.001       | 0.011               |               | 0.0200           | < 0.0005             | < 0.0002             |                        | 0.04      | 0.              |
|                                    | 04/28/16             | 1.0    | 1.02              | 0.022       | 0.022               | 0.0010        | . 0.0005         | . 0.0005             | . 0.0001             | . 0.00050              | 0.07      |                 |
|                                    | 08/04/16             | 1.9    | 1.82              | 0.032       | 0.033               | 0.0019        | < 0.0005         | < 0.0005             | < 0.0001             | < 0.00050              | 0.05      | 0.0             |
|                                    | 08/23/16             | 2.2    | 1.97              | 0.022       | 0.013               | 0.0050        | 0.0104           | < 0.0005             | < 0.0002<br>< 0.0002 | 0.00060                | 0.04 0.05 | 0.0             |
|                                    | 12/22/16<br>01/20/17 | 1.5    | 1.38              | 0.025       | 0.021               | 0.0020        | 0.0021<br>0.0029 | < 0.0010<br>0.0005   | < 0.0002             | < 0.00050              | 0.05      | 0.0             |
|                                    | 01/20/17<br>02/18/17 | < 1.0  |                   | 0.013       | 0.010               | +             | 0.0029           | < 0.0005             |                      | +                      | 0.04      | 0.              |
|                                    | 02/18/17             | < 1.0  | < 0.10            | 0.013       | 0.008               | NA            | < 0.0005         | < 0.0005             | < 0.0003             | NA                     | 0.05      | 0.              |
|                                    | 08/04/17             | < 1.0  | < 0.10            | 0.029       | 0.022               | 0.0044        | < 0.0005         | < 0.0005             | < 0.0003             | < 0.00100              | 0.03      | 0.              |
|                                    | 01/09/18             | 1.13   | 0.75              | 0.014       | 0.014               | 0.0044        | 0.0010           | 0.0020               | < 0.0003             | < 0.00100              | 0.03      | 0.              |
|                                    | 07/15/18             | 1.68   | 1.49              | 0.020       | 0.000               | 0.0032        | 0.0044           | 0.0020               | < 0.0002             | < 0.00100              | 0.04      | 0.              |
|                                    | 02/14/19             | 2.39   | 1.79              | 0.000       | < 0.001             | 0.0032        | 0.0199           | < 0.0005             | < 0.0002             | 0.00142                | 0.10      | 0.              |
|                                    | 11/20/19             | 4.00   | 3.45              | 0.025       | 0.012               | 0.0090        | 0.0070           | 0.0020               | < 0.0002             | < 0.00200              | 0.10      | 0.              |
|                                    | 11/28/19             | 2.50   | 1.70              | 0.008       | 0.007               | 0.0013        | 0.0026           | < 0.0010             | < 0.0003             | < 0.0010               | 0.05      | 0.              |
|                                    | 03/11/20             | 1.57   | 1.40              | 0.023       | 0.003               | 0.0076        | 0.0044           | 0.0005               | < 0.0002             | < 0.0010               | 0.05      | 0.0             |
|                                    | 07/26/21             | 6.79   | 5.78              | 0.037       | < 0.001             | 0.0200        | 0.0467           | < 0.0010             | < 0.0003             | < 0.0013               | 0.18      | 0.0             |
|                                    | 07/25/22             | 2.89   | 2.56              | 0.006       | 0.002               | 0.0030        | 0.0066           | < 0.0012             | < 0.0003             | < 0.0012               | 0.05      | 0.              |
|                                    | 08/12/22             | 9.32   | 8.26              | 0.029       | 0.003               | 0.0095        | 0.0203           | < 0.0012             | 0.0008               | < 0.0012               | 0.16      | 0.0             |
|                                    | 06/16/23             | 5.75   | 4.65              | 0.019       | < 0.001             | 0.0064        | 0.0072           | < 0.0010             | < 0.0003             | < 0.0010               | 0.14      | < 0.0           |
|                                    | 09/01/23             | 3.66   | 3.02              | 0.027       | 0.005               | 0.0161        | 0.0163           | < 0.0010             | < 0.0003             | < 0.0010               | 0.17      | 0.0             |
|                                    | Median               | 2.00   | 7.45              | 0.0260      | 0.010               | 0.0085        | 0.0081           | < 0.0005             | < 0.0002             | < 0.0010               | 0.08      | 0.0             |
|                                    | Maximum              | 24.5   | 27.62             | 0.2180      | 0.033               | 2.500         | 0.151            | 0.1090               | 0.0019               | 0.6100                 | 0.62      | 0.1             |
|                                    | Minimum              | < 0.20 | < 0.10            | 0.0013      | < 0.001             | 0.001         | < 0.0005         | < 0.0005             | < 0.0001             | < 0.0001               | 0.029     | < 0.            |

| Location                                                                | Date                 | Silver               | Nickel           | Selenium             | Dissolved<br>Selenium | Arsenic     | Boron                                      | Alkalinity<br>In CaCo3 | Aluminum       | Antimony        | Barium        | Beryllium            | Bicarbonate<br>Alkalinity as<br>HCO3 | Bromide       | Bromate            |
|-------------------------------------------------------------------------|----------------------|----------------------|------------------|----------------------|-----------------------|-------------|--------------------------------------------|------------------------|----------------|-----------------|---------------|----------------------|--------------------------------------|---------------|--------------------|
|                                                                         | 02/12/03             | mg/L<br>< 0.0025     | mg/L<br>0.0600   | mg/L                 | mg/L                  | mg/L        | mg/L                                       | mg/L<br>122            | mg/L<br>< 2.50 | mg/L<br>< 0.005 | mg/L<br>0.82  | mg/L<br>< 0.0050     | mg/L<br>149                          | mg/L          | mg/L               |
|                                                                         | 12/28/04             | < 0.0025             | 0.0560           | < 0.1500             |                       | 0.032       | 0.510                                      | 87                     | 31.00          | 0.001           | 0.82          | 0.0016               | 149                                  | 0.15          | < 0.005            |
|                                                                         | 02/11/05             | < 0.0005             | 0.0350           | < 0.0100             |                       | 0.017       | 0.330                                      | 93                     | 15.00          | 0.001           | 0.34          | < 0.0010             | 113                                  | 0.13          | < 0.005            |
|                                                                         | 10/25/05             |                      |                  |                      |                       |             |                                            |                        |                |                 |               |                      |                                      |               |                    |
|                                                                         | 10/14/06             | 1.0000               | 0.0940           | < 0.0050             |                       | 0.049       | 0.370                                      | 65                     | 59.00          | < 0.001         | 0.93          | 0.0033               | 79                                   | 0.09          | < 0.005            |
|                                                                         | 04/16/07<br>07/24/07 | < 0.0005<br>< 0.0005 | 0.0093           | < 0.0050<br>< 0.0050 |                       | 0.009       | 0.700                                      | 132<br>120             | 0.14           | 0.003           | 0.05          | < 0.0010<br>0.0002   | 160<br>150                           | 0.29          | < 0.005<br>< 0.005 |
|                                                                         | 07/24/07             | < 0.0005             | 0.0100           | < 0.0050             |                       | 0.009       | 0.580                                      | 120                    | 0.97           | < 0.003         | 0.09          | < 0.0010             | 150                                  | 0.18          | < 0.005            |
|                                                                         | 08/27/07             | < 0.0005             | < 0.0050         | < 0.0050             |                       | 0.023       | 0.360                                      | 100                    | < 0.02         | 0.003           | 0.31          | < 0.0010             | 120                                  | 0.07          | < 0.005            |
|                                                                         | 09/22/07             | < 0.0100             | 0.0160           | < 0.0010             |                       | 0.017       | 0.260                                      | 110                    | 12.70          | < 0.020         | 0.22          | < 0.0020             | 130                                  | 0.08          | < 0.005            |
|                                                                         | 01/27/08             | < 0.0005             | < 0.0050         | < 0.0054             |                       | 0.010       | 0.750                                      | 117                    | 1.33           | < 0.001         | 0.05          | < 0.0020             | 140                                  | 0.26          | < 0.005            |
|                                                                         | 08/07/08             | < 0.0005             | 0.0280           | 0.0110               |                       | 0.039       | 0.480                                      | 257                    | 8.84           | < 0.002         | 0.27          | < 0.0020             | 313                                  | 0.22          | < 0.005            |
|                                                                         | 11/26/08<br>02/07/09 | < 0.0005<br>< 0.0005 | 0.0150           | 0.0070               |                       | 0.014 0.015 | 0.480                                      | 135<br>87              | 3.90<br>2.30   | 0.003           | 0.11 0.11     | < 0.0010<br>< 0.0010 | 165<br>106                           | 0.19 0.15     | < 0.005<br>< 0.005 |
|                                                                         | 01/20/10             | < 0.0005             | 0.0110           | < 0.0050             |                       | 0.015       | 0.320                                      | 97                     | 7.00           | < 0.002         | 0.28          | < 0.0010             | 120                                  | 0.13          | < 0.005            |
|                                                                         | 01/27/10             | < 0.0005             | 0.0130           | 0.0058               |                       | 0.013       | 0.490                                      | 120                    | 4.60           | 0.003           | 0.15          | < 0.0010             | 150                                  | 0.24          | < 0.005            |
|                                                                         | 02/06/10             | < 0.0005             | 0.0100           | < 0.0050             |                       | 0.011       | 0.530                                      | 120                    | 2.70           | 0.001           | 0.11          | < 0.0010             | 120                                  | 0.23          | < 0.005            |
|                                                                         | 02/22/10             | NA                   | NA               | NA                   |                       | NA<br>0.007 | NA                                         | NA<br>120              | NA<br>2.50     | NA              | NA<br>0.75    | NA                   | NA<br>150                            | NA<br>0.16    | NA<br>0.005        |
|                                                                         | 12/20/10<br>12/22/10 | < 0.0005<br>NA       | 0.0084<br>NA     | < 0.0050<br>NA       |                       | 0.007<br>NA | 0.430<br>NA                                | 130<br>NA              | 3.50<br>NA     | < 0.001<br>NA   | 0.75<br>NA    | < 0.0010<br>NA       | 150<br>NA                            | 0.16<br>NA    | < 0.005<br>NA      |
|                                                                         | 07/03/11             | < 0.0005             | 0.0440           | < 0.0250             |                       | 0.057       | 0.640                                      | 130                    | 51.00          | < 0.001         | 0.52          | 0.0011               | 150                                  | 0.20          | < 0.005            |
|                                                                         | 09/13/11             | < 0.0005             | 0.0230           | < 0.0050             |                       | 0.020       | 0.410                                      | 91                     | 13.00          | 0.002           | 0.25          | < 0.0010             | 110                                  | 0.12          | < 0.005            |
|                                                                         | 10/03/11             | < 0.0005             | 0.0140           | < 0.0050             |                       | 0.011       | 0.440                                      | 110                    | 5.00           | 0.002           | 0.13          | < 0.0010             | 130                                  | 0.17          | < 0.005            |
|                                                                         | 07/16/12             | < 0.0005             | 0.0080           | < 0.0050             |                       | 0.009       | 0.360                                      | 120                    | 2.30           | < 0.001         | 0.09          | < 0.0010             | 140                                  | 0.15          | < 0.005            |
|                                                                         | 07/31/12<br>08/22/12 | NA<br>< 0.0005       | NA<br>0.0380     | NA<br>0.0056         |                       | NA<br>0.039 | NA<br>0.390                                | NA<br>80               | NA<br>19.00    | NA<br>0.001     | NA<br>0.38    | NA < 0.0010          | NA<br>98                             | NA<br>0.10    | NA<br>< 0.005      |
|                                                                         | 09/11/12             | 0.0019               | 0.0380           | 0.0056               |                       | 0.099       | 0.390                                      | 80                     | 69.00          | < 0.001         | 1.60          | 0.0034               | 98                                   | 0.10          | < 0.005            |
|                                                                         | 10/11/12             | NA                   | NA               | < 0.0050             |                       | NA          | 0.460                                      | NA                     | NA             | NA              | NA            | NA                   | NA                                   | NA            | NA                 |
|                                                                         | 01/26/13             | NA                   | NA               | < 0.0050             |                       | NA          | 0.490                                      | NA                     | NA             | NA              | NA            | NA                   | NA                                   | NA            | NA                 |
|                                                                         | 07/19/13             | < 0.0005             | 0.0450           | < 0.0100             |                       | 0.041       | 0.491                                      | 148                    | 33.10          | 0.003           | 0.60          | 0.003                | 180                                  | 4.07          | < 0.100            |
| Laberta - Vara & Dainham Candana                                        | 08/18/13<br>08/25/13 | < 0.0005<br>NA       | 0.0051<br>NA     | 0.0026               |                       | 0.008<br>NA | 0.462                                      | 130<br>NA              | 2.66<br>NA     | 0.001<br>NA     | 0.09<br>NA    | < 0.0010<br>NA       | 159<br>NA                            | < 0.10<br>NA  | < 0.100<br>NA      |
| Lake Las Vegas & Rainbow Gardens<br>*LLV Ends 2009-2010 RG Starts 2010- | 11/21/13             | < 0.0005             | 0.0192           | 0.0077               |                       | 0.017       | 0.265                                      | 115                    | 13.00          | 0.003           | 0.28          | < 0.0010             | 140                                  | < 0.01        | < 0.005            |
| 2012                                                                    | 08/04/14             | < 0.0005             | 0.0163           | < 0.0010             |                       | 0.012       | 0.413                                      | 127                    | 9.57           | 0.002           | 0.18          | < 0.0010             | 155                                  | < 0.01        | < 0.005            |
|                                                                         | 08/20/14             | < 0.0005             | 0.0096           | 0.0018               |                       | 0.009       | 0.319                                      | 185                    | 7.81           | 0.001           | 0.21          | < 0.0010             | 226                                  | < 0.01        | < 0.005            |
|                                                                         | 09/08/14             | < 0.0005             | 0.0149           | 0.0022               |                       | 0.012       | 0.251                                      | 346                    | 11.60          | 0.003           | 0.18          | < 0.0010             | 346                                  | < 0.01        | < 0.005            |
|                                                                         | 01/11/15<br>01/30/15 | NA<br>NA             | NA<br>NA         | 0.0050 0.0040        |                       | NA<br>NA    | 0.277 0.530                                | NA<br>NA               | NA<br>NA       | NA<br>NA        | NA<br>NA      | NA<br>NA             | NA<br>NA                             | NA<br>NA      | NA<br>NA           |
|                                                                         | 03/02/15             | NA                   | NA               | < 0.0050             |                       | NA          | 0.330                                      | NA                     | NA             | NA              | NA            | NA                   | NA                                   | NA            | NA                 |
|                                                                         | 07/06/15             | < 0.0005             | 0.0100           | 0.0020               |                       | 0.009       | 0.350                                      | 213                    | 1.08           | 0.003           | 0.15          | < 0.0010             | 260                                  | 0.14          | < 0.005            |
|                                                                         | 10/05/15             | NA                   | NA               | 0.0020               |                       | NA          | 0.560                                      | NA                     | NA             | NA              | NA            | NA                   | NA                                   | NA            | NA                 |
|                                                                         | 01/31/16             | < 0.0005             | 0.0080           | 0.0030               |                       | 0.005       | 0.190                                      | 138                    | 2.12           | 0.001           | 0.60          | < 0.0010             | 168                                  | 0.13          | < 0.005            |
|                                                                         | 04/09/16<br>04/28/16 |                      |                  | < 0.0050             |                       |             | 0.500                                      |                        |                |                 |               |                      |                                      |               | <u> </u>           |
|                                                                         | 08/04/16             | < 0.0005             | 0.0076           | 0.0029               |                       | 0.005       | 0.347                                      | 115                    | 0.01           | 0.002           | 0.08          | < 0.0010             | 140                                  | < 0.01        | < 0.005            |
|                                                                         | 08/23/16             | < 0.0005             | 0.0014           | 0.0025               |                       | 0.008       | 0.516                                      | 95                     | 1.62           | 0.001           | 0.10          | < 0.0010             | 116                                  | < 0.01        |                    |
|                                                                         | 12/22/16             | < 0.0005             | 0.0067           | 0.0042               |                       | 0.008       | 0.394                                      | 115                    | 0.34           | 0.002           | 0.05          | < 0.0010             | 140                                  | 0.13          |                    |
|                                                                         | 01/20/17             |                      |                  | 0.0042               |                       |             | 0.372                                      |                        |                |                 |               |                      |                                      |               | <b> </b>           |
|                                                                         | 02/18/17             | NT 4                 | NT 4             | < 0.0010             |                       | NT 4        | 0.052                                      | 130                    | NT 4           | NT 4            | NT 4          | NT 4                 | 150                                  | NT 4          | NT 4               |
|                                                                         | 07/17/17<br>08/04/17 | NA < 0.0010          | NA<br>0.0072     | 0.0040               |                       | NA<br>0.009 | <ul><li>0.420</li><li>&lt; 0.500</li></ul> | 130                    | NA<br>0.19     | NA<br>0.001     | NA<br>0.06    | NA < 0.001           | 159<br>159                           | NA<br>< 0.001 | NA ~               |
|                                                                         | 01/09/18             | < 0.0010             | 0.0176           | 0.0030               |                       | 0.031       | 0.398                                      | 110                    | 1.78           | 0.001           | 0.16          | < 0.001              | 134                                  | < 0.20        | ~                  |
|                                                                         | 07/15/18             | < 0.0005             | 0.0084           | 0.0042               |                       | 0.007       | 0.444                                      | 110                    | 0.45           | < 0.001         | 0.07          | < 0.0010             | 134                                  | 0.06          | NA                 |
|                                                                         | 02/14/19             | < 0.0010             | 0.0308           | < 0.0010             |                       | 0.011       | 0.267                                      | 81                     | 8.88           | 0.001           | 0.22          | < 0.0010             | 99                                   | 0.02          | NA                 |
|                                                                         | 11/20/19<br>11/28/19 | < 0.0020<br>< 0.0010 | 0.0350<br>0.0052 | < 0.0100<br>0.00302  | < 0.0100<br>0.0027    | 0.011 0.007 | 0.362                                      | 100<br>98              | 1.51<br>1.69   | 0.003           | 0.11 0.04     | < 0.0020<br>< 0.0010 | 100<br>98                            | 0.11 0.08     | NA<br>NA           |
|                                                                         | 03/11/20             | < 0.0010             | 0.0052           | 0.00302              | 0.0027                | 0.007       | 0.303                                      | 98                     | 5.02           | 0.002           | 0.04          | < 0.0010             | 98<br>88                             | 0.08          | NA                 |
|                                                                         | 07/26/21             | < 0.0013             | 0.0234           | < 0.00200            | 0.0019                | 0.017       | 0.411                                      | 420                    | 3.78           | < 0.001         | 0.52          | < 0.0020             | 420                                  | 0.05          | NA                 |
|                                                                         | 07/25/22             | < 0.0012             | 0.0105           | 0.00308              | 0.0021                | 0.007       | 0.434                                      | 136                    | 1.75           | < 0.001         | 0.10          | < 0.0012             | 136                                  | 0.17          | NA                 |
|                                                                         | 08/12/22             | < 0.0012             | 0.0140           | < 0.0025             | < 0.0020              | 0.007       | 0.258                                      | 94                     | 13.10          | 0.003           | 0.24          | < 0.0012             | 94                                   | 0.08          | NA                 |
|                                                                         | 06/16/23<br>09/01/23 | < 0.0010<br>< 0.0010 | 0.0081<br>0.0128 | 0.0025               | 0.0019 0.0016         | 0.010 0.009 | 0.388                                      | 164<br>256             | 3.11<br>9.86   | 0.003           | 0.12          | < 0.0010<br>< 0.0010 | 164<br>256                           | 0.12          | NA<br>NA           |
|                                                                         | 09/01/23<br>Median   | < 0.0010<br>< 0.0005 | 0.0128<br>0.0129 | < <b>0.0019</b>      | 0.0016                | 0.009       | 0.213<br>0.411                             | 256<br>120             | 9.86<br>3.64   | < 0.003         | 0.19<br>0.169 | < 0.0010<br>< 0.0010 | 256<br>140                           | 0.05<br>0.130 | < 0.005            |
|                                                                         | Maximum              | 1.0000               | 0.1400           | < 0.1500             | 0.0017                | 0.099       | 0.750                                      | 420                    | 69             | 0.020           | 1.600         | < 0.0010             | 420                                  | 4.07          | < 0.100            |
|                                                                         | Minimum              | < 0.0005             | 0.0014           | < 0.0010             | 0.0016                | 0.0048      | 0.052                                      | 65                     | 0.0096         | < 0.001         | 0.044         | < 0.0002             | 79.0                                 | < 0.001       | < 0.005            |

|                                                                         | 02/12/03             | mg/L            | mg/L             | Calcium<br>mg/L | Chlorate<br>mg/L | Chloride<br>mg/L | Chlorite<br>mg/L   | Diuron<br>mg/L   | Diquat<br>mg/L       | Paraquat<br>mg/L   | Endothall<br>mg/L  | Fluoride<br>mg/L |
|-------------------------------------------------------------------------|----------------------|-----------------|------------------|-----------------|------------------|------------------|--------------------|------------------|----------------------|--------------------|--------------------|------------------|
| -                                                                       |                      | 9.42            | 0.31             | 120             | ilig/L           | 160              | IIIg/L             | ing/L            | ing/L                | ilig/L             | IIIg/L             | 0.64             |
| -                                                                       |                      | 5.33            | 0.27             | 480             | 0.07             | 140              | < 0.010            | 0.005            | < 0.0040             | < 0.002            | < 0.020            | 0.58             |
| -                                                                       | 02/11/05             | 5.68            | 0.29             | 240             | 0.08             | 120              | < 0.040            | 0.003            | < 0.0040             | < 0.002            | < 0.020            | 0.55             |
| Ē                                                                       | 10/25/05             |                 |                  |                 |                  |                  |                    |                  |                      |                    |                    |                  |
|                                                                         | 10/14/06             | 6.50            | < 2.00           | 510             | 0.05             | 97               | < 0.010            |                  |                      |                    | < 0.020            | 0.42             |
|                                                                         | 04/16/07             | < 2.00          | 2.10             | 150             | 0.39             | 350              | < 0.010            |                  |                      |                    | < 0.020            | 1.00             |
| Γ                                                                       | 07/24/07             | 9.80            | < 2.00           | 180             | 0.15             | 230              | < 0.020            | 0.007            |                      |                    | < 0.020            | 0.80             |
|                                                                         | 08/01/07             | 2.50            | < 2.00           | 140             | 0.28             | 280              | < 0.010            | 0.003            |                      |                    | < 0.020            | 0.86             |
|                                                                         | 08/27/07             | 6.20            | < 2.00           | 450             | 0.06             | 66               | < 0.010            | 0.161            |                      |                    | < 0.020            | 0.39             |
|                                                                         | 09/22/07             | 5.40            | < 2.00           | 230             | 0.06             | 68               | 0.012              |                  |                      |                    | < 0.020            | 0.39             |
|                                                                         | 01/27/08             | 7.30            | < 2.00           | 160             | 0.11             | 251              | 0.117              |                  |                      |                    | < 0.020            | 0.79             |
| -                                                                       | 08/07/08             | 16.00           | < 2.00           | 660             | 0.06             | 290              | < 0.010            | 0.003            | < 0.0040             | < 0.002            | < 0.020            | 0.58             |
| +                                                                       | 11/26/08             | 11.00           | < 2.00           | 180             | 0.14             | 190              | < 0.010            | 0.002            | < 0.0040             | < 0.002            | < 0.020            | 0.62             |
| -                                                                       | 02/07/09             | 4.40            | < 2.00           | 260             | 0.14             | 67               | < 0.010            | 0.007            | < 0.0040             | < 0.002            | < 0.020            | 0.55             |
|                                                                         | 01/20/10<br>01/27/10 | 2.80<br>2.80    | < 2.00<br>< 2.00 | 120<br>170      | 0.18 0.28        | 180<br>240       | < 0.010<br>< 0.010 | 0.001            | < 0.0004<br>< 0.0004 | < 0.002<br>< 0.002 | < 0.020<br>< 0.009 | 0.51             |
| -                                                                       | 01/2//10             | < 2.00          | < 2.00           | 170             | 0.28             | 240              | < 0.010            | < 0.001          | < 0.0004             | < 0.002            | < 0.009            | 0.70             |
|                                                                         | 02/22/10             | < 2.00<br>NA    | < 2.00<br>NA     | NA              | NA               | NA               | < 0.010<br>NA      | < 0.001<br>NA    | < 0.0004<br>NA       | < 0.002<br>NA      | < 0.020<br>NA      | NA               |
|                                                                         | 12/20/10             | 2.30            | < 2.00           | 130             | 0.36             | 230              | < 0.010            | < 0.001          | < 0.0004             | < 0.002            | < 0.005            | 0.64             |
|                                                                         | 12/20/10             | NA              | NA NA            | NA              | NA               | NA               | NA                 | NA               | NA                   | NA NA              | NA                 | NA               |
| F                                                                       | 07/03/11             | 10.00           | < 2.00           | 650             | 0.06             | 230              | < 0.010            | < 0.001          | < 0.0004             | < 0.002            | < 0.005            | 0.69             |
| F                                                                       | 09/13/11             | 4.70            | < 2.00           | 220             | 0.09             | 130              | < 0.010            | < 0.001          | < 0.0004             | < 0.002            | < 0.020            | 0.36             |
| F                                                                       | 10/03/11             | 6.20            | < 2.00           | 170             | 0.24             | 190              | < 0.010            | < 0.001          | < 0.0004             | < 0.002            | < 0.020            | 0.70             |
|                                                                         | 07/16/12             | < 2.00          | < 2.00           | 130             | 0.30             | 170              | < 0.010            | NA               | NA                   | NA                 | NA                 | 0.32             |
|                                                                         | 07/31/12             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
|                                                                         | 08/22/12             | < 2.00          | < 2.00           | 460             | 0.11             | 93               | < 0.010            | 0.001            | NA                   | NA                 | NA                 | 0.34             |
|                                                                         | 09/11/12             | < 2.00          | < 2.00           | 900             | 0.05             | 84               | < 0.010            | < 0.001          | NA                   | NA                 | NA                 | 0.35             |
|                                                                         | 10/11/12             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
|                                                                         | 01/26/13             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
| +                                                                       | 07/19/13             | NA              | < 10.00          | 558             | < 0.1            | 201              | < 0.100            | NA               | NA                   | NA                 | NA                 | 0.86             |
| Laber Las Varan & Dainham Candana                                       | 08/18/13<br>08/25/13 | NA<br>NA        | < 10.00<br>NA    | 144<br>NA       | < 0.1<br>NA      | 199<br>NA        | < 0.100<br>NA      | NA<br>NA         | NA<br>NA             | NA<br>NA           | NA<br>NA           | 0.60<br>NA       |
| Lake Las Vegas & Rainbow Gardens<br>*LLV Ends 2009-2010 RG Starts 2010- | 11/21/13             | NA              | < 10             | 225             | < 0.01           | 173              | < 0.0100           | NA               | NA                   | NA                 | NA                 | 0.34             |
| 2012                                                                    | 08/04/14             | NA              | < 2              | 210             | < 0.01           | 266              | < 0.0050           | NA               | NA                   | NA                 | NA                 | 0.34             |
|                                                                         | 08/20/14             | NA              | < 2              | 149             | < 0.01           | 181              | < 0.0050           | NA               | NA                   | NA                 | NA                 | 0.47             |
| F                                                                       | 09/08/14             | NA              | < 2              | 223             | < 0.01           | 369              | < 0.0050           | NA               | NA                   | NA                 | NA                 | 0.42             |
| F                                                                       | 01/11/15             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
|                                                                         | 01/30/15             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
|                                                                         | 03/02/15             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
|                                                                         | 07/06/15             | NA              | < 2.00           | 159             | < 0.01           | 229              | < 0.010            | NA               | NA                   | NA                 | NA                 | 0.25             |
|                                                                         | 10/05/15             | NA              | NA               | NA              | NA               | NA               | NA                 | NA               | NA                   | NA                 | NA                 | NA               |
| L                                                                       | 01/31/16             | NA              | < 2.00           | 116             | 0.09             | 266              | < 0.010            |                  |                      |                    |                    | 0.82             |
| Ļ                                                                       | 04/09/16             |                 |                  |                 |                  |                  |                    |                  |                      |                    |                    |                  |
| Ļ                                                                       | 04/28/16             |                 |                  |                 |                  |                  |                    |                  |                      |                    |                    |                  |
| Ļ                                                                       | 08/04/16             |                 | < 2.00           |                 | < 0.01           | 203              | < 0.010            | l                |                      |                    |                    | 0.46             |
| 4                                                                       | 08/23/16             |                 | < 2.00           |                 |                  | 181              | }                  | +                | +                    |                    | +                  | 0.45             |
| 4                                                                       | 12/22/16<br>01/20/17 |                 | < 2.00           |                 |                  | 264              |                    |                  |                      |                    |                    | 0.76             |
|                                                                         | 01/20/17             |                 |                  |                 | }                |                  | +                  | +                | +                    | +                  | +                  |                  |
|                                                                         | 02/18/17             |                 | < 5.00           | NA              | NA               | NA               | NA                 | 1                | 1                    | 1                  |                    | NA               |
|                                                                         | 08/04/17             |                 | < 5.00           | ~               | ~                | 215              | ~                  | 1                | +                    |                    | +                  | < 0.10           |
|                                                                         | 01/09/18             |                 | < 5.00           | ~               | ~                | 171              | ~                  | 1                | 1                    | 1                  | 1                  | 0.71             |
| F                                                                       | 07/15/18             | NA              | < 2.00           | NA              | NA               | 202              | NA                 | NA               | NA                   | NA                 | NA                 | 0.46             |
| F                                                                       | 02/14/19             | NA              | < 5.00           | NA              | NA               | 59               | NA                 | NA               | NA                   | NA                 | NA                 | 0.32             |
| F                                                                       | 11/20/19             | NA              | < 5.00           | NA              | NA               | 192              | NA                 | NA               | NA                   | NA                 | NA                 | 0.87             |
| F                                                                       | 11/28/19             | NA              | < 5.00           | NA              | NA               | 125              | NA                 | NA               | NA                   | NA                 | NA                 | < 0.10           |
| F                                                                       | 03/11/20             | NA              | < 5.00           | NA              | NA               | 95               | NA                 | NA               | NA                   | NA                 | NA                 | 0.52             |
| Γ                                                                       | 07/26/21             | NA              | < 5.00           | NA              | NA               | 152              | NA                 | NA               | NA                   | NA                 | NA                 | 0.55             |
| Γ                                                                       | 07/25/22             | NA              | < 5.00           | NA              | NA               | 259              | NA                 | NA               | NA                   | NA                 | NA                 | 0.63             |
|                                                                         | 08/12/22             | NA              | < 5.00           | NA              | NA               | 98               | NA                 | NA               | NA                   | NA                 | NA                 | 0.32             |
| Ļ                                                                       | 06/16/23             | NA              | < 5.00           | NA              | NA               | 159              | NA                 | NA               | NA                   | NA                 | NA                 | 0.99             |
|                                                                         | 09/01/23             | NA              | < 5.00           | NA              | NA               | 56               | NA                 | NA               | NA                   | NA                 | NA                 | 0.44             |
| 4                                                                       | Median               | 5.330           | < 2.00           | 180             | < 0.09           | 186              | < 0.010            | < 0.0014         | < 0.0004             | < 0.002            | < 0.020            | 0.55             |
| 4                                                                       | Maximum<br>Minimum   | 16.00<br>< 2.00 | < 10.00<br>0.27  | 900<br>116      | 0.390            | 369<br>56        | 0.117              | 0.161<br>< 0.001 | < 0.004<br>< 0.0004  | < 0.002<br>< 0.002 | 0.020              | 1.00<br>< 0.100  |

| Location                           | Date                 | <b>Glyphosate</b><br>mg/L | Hardness<br>as CaCO3<br>mg/L | Hydroxide<br>as OH<br>mg/L | <b>Iron</b><br>mg/L | Langelier Index<br>25 degree<br>None | <b>Magnesium</b><br>mg/L | <b>Manganese</b><br>mg/L | Potassium<br>mg/L | Reactive<br>Silica<br>mg/L | Sodium<br>mg/L | Sulfate<br>mg/L | Thallium<br>mg/L   | Organic<br>Carbon<br>mg/L |
|------------------------------------|----------------------|---------------------------|------------------------------|----------------------------|---------------------|--------------------------------------|--------------------------|--------------------------|-------------------|----------------------------|----------------|-----------------|--------------------|---------------------------|
|                                    | 02/12/03             | 8                         | 1,980                        | 0.005                      | 56.00               | 0.95                                 | 33                       | 2.80                     | 14                |                            | 75             | 490             | < 0.005            |                           |
| -                                  | 12/28/04             | < 0.006                   | 1,600                        | 0.007                      | 26.00               | 0.84                                 | 120                      | 1.30                     | 26                | 150                        | 120            | 520             | < 0.001            | 29                        |
|                                    | 02/11/05             | < 0.006                   | 908                          | 0.007                      | 11.00               | 0.59                                 | 75                       | 0.54                     | 16                | 14                         | 110            | 370             | < 0.001            | 14                        |
|                                    | 10/25/05             |                           |                              |                            |                     |                                      |                          |                          | -                 |                            |                |                 |                    |                           |
|                                    | 10/14/06             | < 0.006                   | 1,600                        | < 2.000                    | 16.00               | 0.50                                 | 71                       | 2.60                     | 22                | 130                        | 82             | 700             | < 0.001            | 14                        |
|                                    | 04/16/07             | < 0.006                   | 690                          | < 2.000                    | 0.31                | 1.20                                 | 76                       | 0.06                     | 28                | 20                         | 290            | 650             | < 0.001            | 6                         |
|                                    | 07/24/07             | 0.009                     | 730                          | < 2.000                    | 0.67                | 0.40                                 | 68                       | 0.22                     | 26                | 17                         | 190            | 540             | < 0.001            | 12                        |
|                                    | 08/01/07             | < 0.006                   | 620                          | < 2.000                    | 0.40                | 0.90                                 | 66                       | 0.21                     | 22                | 20                         | 240            | 240             | < 0.001            | 8                         |
|                                    | 08/27/07             | 0.013                     | 1,400                        | < 2.000                    | 11.00               | 0.80                                 | 64                       | 0.93                     | 19                | 9                          | 64             | 320             | < 0.001            | 31                        |
|                                    | 09/22/07             | < 0.006                   | 830                          | < 2.000                    | 12.00               | 0.60                                 | 61                       | 0.64                     | 17                | 15                         | 64             | 210             | < 0.001            | 21                        |
|                                    | 01/27/08             | < 0.006                   | 720                          | < 2.000                    | 0.67                | 0.40                                 | 79                       | 0.15                     | 25                | 23                         | 210            | 650             | < 0.001            | 12                        |
|                                    | 08/07/08             | 0.016                     | 2,140                        | < 2.000                    | 2.10                | 1.40                                 | 120                      | 1.21                     | 37                | 17                         | 210            | 1,100           | < 0.002            | 29                        |
|                                    | 11/26/08             | 0.026                     | 738                          | < 2.000                    | 6.90                | 0.40                                 | 70                       | 0.66                     | 26                | 15                         | 160            | 440             | < 0.001            | 38                        |
|                                    | 02/07/09             | 0.011                     | 913                          | < 2.000                    | 1.40                | 0.60                                 | 64                       | 0.75                     | 19                | 12                         | 130            | 380             | < 0.001            | 15                        |
|                                    | 01/20/10             | < 0.006                   | 510                          | < 2.000                    | 7.70                | 0.56                                 | 49                       | 0.41                     | 19                | 77                         | 150            | 320             | < 0.001            | 9                         |
|                                    | 01/27/10             | < 0.006                   | 740                          | < 2.000                    | 5.10                | 0.89                                 | 74                       | 0.27                     | 21                | 61                         | 200            | 530             | < 0.001            | 8                         |
| Ļ                                  | 02/06/10             | < 0.006                   | 650                          | < 2.000                    | 2.60                | 1.00                                 | 68                       | 0.18                     | 22                | 41                         | 220            | 510             | < 0.001            | 7                         |
| ļ                                  | 02/22/10             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | -                         |
| ļ                                  | 12/20/10             | < 0.006                   | 560                          | < 2.000                    | 3.40                | 0.91                                 | 56                       | 0.15                     | 21                | 37                         | 190            | 410             | < 0.001            | 8                         |
| ļ                                  | 12/22/10             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | 24                        |
| 4                                  | 07/03/11             | < 0.006                   | 2,200                        | < 2.000                    | 45.00               | 0.94                                 | 140                      | 1.30                     | 45                | 88                         | 170            | 1,100           | < 0.001            | 24                        |
| 4                                  | 09/13/11             | 0.012                     | 800                          | < 2.000                    | 10.00               | 0.52                                 | 64                       | 0.00                     | 21                | 91                         | 100            | 420             | < 0.001            | 27                        |
| -                                  | 10/03/11             | < 0.006                   | 630                          | < 2.000                    | 4.90                | 0.46                                 | 65                       | 0.29                     | 20                | 59                         | 160            | 440             | < 0.001            | 15                        |
| -                                  | 07/16/12             | < 0.006                   | 530                          | < 2.000                    | 2.00                | 0.21                                 | 48<br>NA                 | 0.01                     | 19<br>NA          | 34<br>NA                   | 140            | 370<br>NA       | < 0.001            |                           |
| -                                  | 07/31/12<br>08/22/12 | NA<br>< 0.006             | NA<br>1,400                  | NA<br>< 2.000              | NA<br>17.00         | NA<br>0.93                           | NA<br>73                 | NA<br>1.20               | NA<br>24          | NA<br>120                  | NA<br>98       | NA<br>540       | NA < 0.001         |                           |
| -                                  | 08/22/12             | < 0.006                   | 3,000                        | < 2.000                    | 71.00               | 1.20                                 | 200                      | 3.60                     | 37                | 120                        | 83             | 520             | < 0.001            |                           |
| -                                  | 10/11/12             | < 0.000<br>NA             | 3,000<br>NA                  | < 2.000<br>NA              | /1.00<br>NA         | NA                                   | NA                       | NA                       | NA                | NA                         | NA NA          | NA              | < 0.002<br>NA      |                           |
| -                                  | 01/26/13             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 |                           |
|                                    | 07/19/13             | NA                        | 1,999                        | < 2.000                    | 33.20               | NA                                   | 147                      | 1.68                     | 45                | 106                        | 172            | 497             | 0.004              | 21                        |
| -                                  | 08/18/13             | NA                        | 616                          | < 2.000                    | 2.35                | NA                                   | 62                       | 0.16                     | 22                | 33                         | 183            | 369             | < 0.001            | 8                         |
| Lake Las Vegas & Rainbow Gardens   | 08/25/13             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | NA                        |
| LLV Ends 2009-2010 RG Starts 2010- | 11/21/13             | NA                        | 564                          | < 2.000                    | 12.40               | NA                                   | 64                       | 0.56                     | 16                | 72                         | 89             | 273             | < 0.001            | 27                        |
| 2012                               | 08/04/14             | NA                        | 835                          | < 2.000                    | 8.90                | NA                                   | 75                       | 0.44                     | 34                | 67                         | 143            | 395             | < 0.001            | 11                        |
| -                                  | 08/20/14             | NA                        | 612                          | < 2.000                    | 6.48                | NA                                   | 58                       | 0.30                     | 29                | 55                         | 129            | 342             | < 0.001            | 6                         |
|                                    | 09/08/14             | NA                        | 843                          | < 2.000                    | 10.70               | NA                                   | 69                       | 0.52                     | 30                | 79                         | 120            | 729             | < 0.001            | 14                        |
|                                    | 01/11/15             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | NA                        |
|                                    | 01/30/15             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | NA                        |
|                                    | 03/02/15             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | NA                        |
|                                    | 07/06/15             | NA                        | 598                          | < 2.000                    | 0.80                | NA                                   | 49                       | 0.42                     | 32                | 15                         | 293            | 420             | < 0.001            | 14                        |
|                                    | 10/05/15             | NA                        | NA                           | NA                         | NA                  | NA                                   | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | NA                        |
|                                    | 01/31/16             |                           | 459                          | < 2.000                    | 0.09                |                                      | 41                       | 0.05                     | 31                | 16                         | 303            | 299             | < 0.001            | 6                         |
|                                    | 04/09/16             |                           |                              |                            |                     |                                      |                          |                          |                   |                            |                |                 |                    |                           |
|                                    | 04/28/16             |                           |                              |                            |                     |                                      |                          |                          |                   |                            |                |                 |                    |                           |
|                                    | 08/04/16             |                           | 384                          | < 2.000                    | 0.14                |                                      | 33                       | 0.07                     |                   |                            | 303            | 421             | < 0.001            | 40                        |
|                                    | 08/23/16             |                           | 616                          | < 2.000                    | 0.74                | <u> </u>                             | 36                       | 0.28                     |                   |                            | 94             | 466             | < 0.001            | 68                        |
|                                    | 12/22/16             |                           | 437                          | < 2.000                    | 0.31                | <u> </u>                             | 39                       | 0.14                     |                   |                            | 163            | 599             | < 0.001            | 36                        |
|                                    | 01/20/17             |                           |                              |                            |                     |                                      |                          |                          |                   |                            |                |                 |                    |                           |
| ļ                                  | 02/18/17             |                           |                              |                            |                     |                                      |                          |                          |                   |                            |                |                 |                    |                           |
| ļ                                  | 07/17/17             |                           | NA                           | < 5.000                    | NA                  |                                      | NA                       | NA                       | NA                | NA                         | NA             | NA              | NA                 | NA                        |
| ļ                                  | 08/04/17             |                           | 520                          | < 5.000                    | 0.16                |                                      | 43                       | 0.07                     | ~                 | ~                          | 167            | 457             | < 0.001            | 42                        |
| ļ                                  | 01/09/18             |                           | 675                          | < 5.000                    | 1.66                |                                      | 52                       | 1.36                     | ~                 | ~                          | 172            | 417             | < 0.001            | 52                        |
| ļ                                  | 07/15/18             | NA                        | 441                          | < 2.000                    | 0.56                | NA                                   | 40                       | 0.12                     | NA                | NA                         | 207            | 410             | < 0.001            | 8.22                      |
| 4                                  | 02/14/19             | NA                        | 628                          | < 2.000                    | 12.90               | NA                                   | 48                       | 0.33                     | NA                | NA                         | 74             | 165             | < 0.001            | 11.10                     |
| 4                                  | 11/20/19             | NA                        | 534<br>394                   | < 5.000<br>< 5.000         | 1.41<br>0.72        | NA<br>NA                             | 48                       | 0.31                     | NA<br>NA          | NA<br>NA                   | 141<br>119     | 394<br>273      | < 0.001<br>< 0.001 | 41.90                     |
|                                    | 11/28/19             | NA                        |                              |                            |                     |                                      | 35<br>29                 |                          |                   |                            | 84             | 273             |                    | 13.30                     |
|                                    | 03/11/20             | NA                        | 323                          | < 5.000                    | 0.58                | NA<br>NA                             |                          | 0.16                     | NA                | NA<br>NA                   | 84<br>120      | 334             | < 0.001            | 12.50                     |
|                                    | 07/26/21             | NA                        | 957<br>514                   | < 5.000                    | 24.90               |                                      | 73                       | 0.98                     | NA                |                            |                |                 | < 0.001            | 16.90                     |
| 4                                  | 07/25/22             | NA                        | 514                          | < 5.000                    | 1.32                | NA                                   | 48                       | 0.24                     | NA                | NA                         | 201            | 440             | < 0.001            | 8.88                      |
| 4                                  | 08/12/22             | NA                        | 678                          | < 5.000                    | 12.00               | NA                                   | 49                       | 0.51                     | NA                | NA                         | 81             | 233             | < 0.001            | 17.40                     |
|                                    | 06/16/23             | NA                        | 539                          | < 5.000                    | 2.95                | NA                                   | 48                       | 0.32                     | NA                | NA                         | 133            | 350             | < 0.001            | 82.70                     |
|                                    | 09/01/23<br>Madian   | NA                        | 570<br>663                   | < 5.000                    | 8.67<br>4.15        | NA<br>0.8                            | 38                       | 0.29<br>0.321            | NA<br>22          | NA<br>20                   | 53<br>142      | 156             | < 0.001            | 15.70                     |
|                                    | Median               | < 0.006                   | <u> </u>                     | < 2.000<br>< 5.000         | 4.15                | 0.8                                  | 63<br>200                | 0.321 3.60               | 22<br>45          | 39<br>150                  | 303            | 419 1,100       | < 0.001<br>< 0.005 | 14.7<br>82.7              |
| ł                                  | Maximum              | 0.026                     |                              |                            |                     |                                      |                          |                          |                   |                            |                |                 |                    |                           |

| Location                                                                | Date                 | <b>Cyanide</b><br>mg/L | BOD<br>mg/L | COD<br>mg/L | <b>Color</b><br>ACU | <b>Turbidity</b><br>NTU | Phenol<br>mg/L | Petroleum<br>Hydrocarbons | TPH<br>(diesel)<br>MPN/100 mL | <b>TPH</b><br>(gasoline)<br>MPN/100 mL | Total<br>Chlorine<br>mg/L | Fecal<br>Coliform<br>MPN/100 mL | Fecal*<br>Coliform<br>MPN/100 mL |
|-------------------------------------------------------------------------|----------------------|------------------------|-------------|-------------|---------------------|-------------------------|----------------|---------------------------|-------------------------------|----------------------------------------|---------------------------|---------------------------------|----------------------------------|
|                                                                         | 02/12/03             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 1,600,000                       |                                  |
|                                                                         | 12/28/04             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 7,000                           |                                  |
|                                                                         | 02/11/05             |                        |             |             |                     | 2.140                   |                |                           |                               |                                        |                           | 50,000                          |                                  |
|                                                                         | 10/25/05             |                        |             |             |                     | 2,140                   |                |                           |                               |                                        |                           | 220,000                         |                                  |
| -                                                                       | 10/14/06<br>04/16/07 |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 220,000<br>23                   |                                  |
|                                                                         | 07/24/07             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | > 1,600,000                     |                                  |
|                                                                         | 08/01/07             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 5,000                           |                                  |
|                                                                         | 08/27/07             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 900,000                         |                                  |
|                                                                         | 09/22/07             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 1,600,000                       |                                  |
|                                                                         | 01/27/08             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 11,000                          |                                  |
|                                                                         | 08/07/08             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 24,000                          |                                  |
|                                                                         | 11/26/08             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 900,000                         |                                  |
|                                                                         | 02/07/09             |                        |             |             |                     |                         |                |                           |                               |                                        |                           | 22,000                          |                                  |
|                                                                         | 01/20/10             |                        |             |             |                     | 320                     |                |                           |                               |                                        |                           | 170,000                         |                                  |
|                                                                         | 01/27/10             |                        |             |             |                     | 200                     |                |                           |                               |                                        |                           | 3,000                           |                                  |
|                                                                         | 02/06/10             |                        |             |             |                     | 48                      |                |                           |                               |                                        |                           | 2,200                           |                                  |
|                                                                         | 02/22/10             |                        |             |             |                     | 61<br>100               |                |                           | +                             |                                        |                           | 2,000                           |                                  |
|                                                                         | 12/20/10<br>12/22/10 |                        |             |             | <u> </u>            | 100                     | <u> </u>       |                           | <del> </del>                  |                                        | <u> </u>                  | NA<br>30,000                    | <u> </u>                         |
|                                                                         | 07/03/11             |                        |             |             |                     | 260                     |                |                           | +                             |                                        |                           | 5,000,000                       |                                  |
|                                                                         | 09/13/11             |                        |             |             |                     | 240                     |                |                           | 1                             |                                        |                           | 2,600,000                       |                                  |
|                                                                         | 10/03/11             | 1                      | 1           |             |                     | 110                     |                |                           | 1                             |                                        |                           | 300,000                         | 1                                |
|                                                                         | 07/16/12             |                        |             |             |                     | 170                     |                |                           |                               |                                        |                           | 230,000                         |                                  |
|                                                                         | 07/31/12             |                        | 3           |             |                     | 83                      |                |                           |                               |                                        |                           | 14,000                          |                                  |
|                                                                         | 08/22/12             |                        |             |             |                     | 2,100                   |                |                           |                               |                                        |                           | 790,000                         |                                  |
|                                                                         | 09/11/12             |                        |             |             |                     | 3,700                   |                |                           |                               |                                        |                           | 330,000                         |                                  |
|                                                                         | 10/11/12             |                        | 10          |             |                     | 720                     |                |                           |                               |                                        |                           | 680,000                         |                                  |
|                                                                         | 01/26/13             |                        | 9           |             |                     | 170                     |                |                           |                               |                                        |                           | 11,000                          |                                  |
|                                                                         | 07/19/13             | < 0.050                | 20          | 176         |                     | 203                     | 1.08           |                           |                               |                                        |                           | > 241,960                       |                                  |
|                                                                         | 08/18/13             | < 0.050                | 5           | 909         |                     | 133<br>906              | 0.06           |                           |                               |                                        |                           | > 241,960                       |                                  |
| Lake Las Vegas & Rainbow Gardens<br>*LLV Ends 2009-2010 RG Starts 2010- | 08/25/13             | NA < 0.050             | 4 24        | 804<br>128  |                     | 734                     | NA<br>0.66     |                           |                               |                                        |                           | > 241,960<br>25,820             |                                  |
| 2012                                                                    | 08/04/14             | < 0.050                | 36          | 302         |                     | 473                     | < 0.05         |                           |                               |                                        |                           | 68,670                          |                                  |
|                                                                         | 08/20/14             | < 0.050                | 4           | 48          |                     | 305                     | 0.25           |                           |                               |                                        |                           | 5,780                           |                                  |
|                                                                         | 09/08/14             | < 0.050                | 13          | 80          |                     | 658                     | 0.13           |                           |                               |                                        |                           | 86,640                          |                                  |
|                                                                         | 01/11/15             | NA                     | 26          | 67          |                     | 183                     |                |                           |                               |                                        |                           | 2,130                           |                                  |
|                                                                         | 01/30/15             | NA                     | 4           | 36          |                     | 54                      |                |                           |                               |                                        |                           | 310                             |                                  |
|                                                                         | 03/02/15             | NA                     | < 2         | 34          |                     | 112                     |                |                           |                               |                                        |                           | 2,420                           |                                  |
|                                                                         | 07/06/15             | < 0.050                | 13          | 42          |                     | 324                     | 0.3            |                           |                               |                                        |                           | 173,250                         |                                  |
|                                                                         | 10/05/15             | NA                     | 15          | 222         |                     | 813                     | NA             |                           |                               |                                        |                           | 209,800                         |                                  |
|                                                                         | 01/31/16             | < 0.050                | < 2         | 51          |                     | 25                      | < 0.05         |                           |                               |                                        |                           | 81,640                          |                                  |
|                                                                         | 04/09/16<br>04/28/16 |                        | < 2         | 72          |                     | 111                     |                |                           | <u> </u>                      |                                        |                           | 155,300                         |                                  |
|                                                                         | 04/28/16             | < 0.050                | < 2         | 26          |                     | 157                     | 0.089          |                           |                               |                                        |                           | 241,960                         |                                  |
|                                                                         | 08/23/16             | < 0.050                | < 2         | 89          |                     | 730                     | 0.039          |                           | 1                             |                                        |                           | 980,400                         |                                  |
|                                                                         | 12/22/16             | < 0.050                | 63          | 108         | 1                   | 80                      | 0.392          | 1                         | 1                             |                                        | 1                         | 40,000                          | 1                                |
|                                                                         | 01/20/17             |                        | 9           | 64          |                     | 308                     |                |                           | 1                             |                                        |                           | 196,630                         |                                  |
|                                                                         | 02/18/17             | 1                      | 77          | 184         |                     | 152                     |                | 1                         | 1                             |                                        |                           | 20,870                          |                                  |
|                                                                         | 07/17/17             |                        | 27          | 39          |                     | 3                       |                |                           |                               |                                        |                           | ~                               |                                  |
| [                                                                       | 08/04/17             | < 0.050                | < 2         | 55          |                     | 10                      | 0.101          |                           |                               |                                        |                           | 32,550                          |                                  |
|                                                                         | 01/09/18             | < 0.050                | 42          | 184         |                     | 512                     | 0.101          |                           |                               |                                        |                           | 12,500                          |                                  |
|                                                                         | 07/15/18             | < 0.050                | < 2         | 19          |                     | 137                     | 0.184          |                           | <u> </u>                      |                                        |                           | > 241,960                       |                                  |
|                                                                         | 02/14/19             | < 0.005<br>< 0.005     | 9           | 28          |                     | 605                     | 0.128<br>0.283 |                           |                               |                                        |                           | 2,099                           |                                  |
|                                                                         | 11/20/19<br>11/28/19 | < 0.005                | 44<br>56    | 161<br>62   |                     | 190<br>47               | 0.283          |                           |                               |                                        |                           | > 24,196<br>> 2,420             |                                  |
|                                                                         | 03/11/20             | < 0.010                | < 50        | 48          |                     | 52                      | 0.497          |                           | 1                             |                                        |                           | 19,863                          |                                  |
|                                                                         | 07/26/21             | < 0.050                | 13          | 232         | 1                   | 1,000                   | 0.05           | 1                         | 1                             |                                        | 1                         | > 48,392                        | 1                                |
|                                                                         | 07/25/22             | < 0.050                | 16          | 40          |                     | 45                      | 0.262          |                           | 1                             |                                        |                           | > 24,196                        |                                  |
|                                                                         | 08/12/22             | < 0.050                | 19          | 186         |                     | 564                     | < 0.05         |                           |                               |                                        |                           | 648,800                         |                                  |
|                                                                         | 06/16/23             | < 0.050                | 80          | 182         |                     | 202                     | 0.208          |                           |                               |                                        |                           | 2,419,600                       |                                  |
|                                                                         | 09/01/23             | < 0.050                | < 20        | 174         |                     | 581                     | 2.24           |                           |                               |                                        |                           | 198,630                         |                                  |
|                                                                         | Median               | < 0.050                | 13          | 76          |                     | 200                     | 0.18           |                           |                               |                                        |                           | 81,640                          |                                  |
|                                                                         | Maximum              | < 0.050                | 80          | 909         |                     | 3,700                   | 2.24           |                           |                               |                                        |                           | 5,000,000                       |                                  |
|                                                                         | Minimum              | < 0.005                | < 2         | 19.3        | l                   | 3                       | < 0.05         |                           | I                             |                                        | 1                         | 23                              | I                                |

| Location                           | Date                 | Fecal**<br>Coliform<br>MPN/100 mL | Fecal<br>Strep.<br>MPN/100 mL | Fecal*<br>Strep.<br>MPN/100 mL | Fecal**<br>Strep.<br>MPN/100 mL | <i>E. Coli</i><br>MPN/100 mL | <b>Salmonella</b><br>MPN/100 mL |    | <b>VOC</b><br># of detects      |    | <b>sticides</b><br>f detects | #  | SOC<br># of detects |          | e <b>rbicides</b><br>of detects |
|------------------------------------|----------------------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------|------------------------------|---------------------------------|----|---------------------------------|----|------------------------------|----|---------------------|----------|---------------------------------|
|                                    | 02/12/03             |                                   | 300,000                       |                                |                                 |                              |                                 |    |                                 |    |                              |    |                     |          |                                 |
|                                    | 12/28/04             |                                   | 17,000                        |                                |                                 |                              |                                 | 4  | x,o,d,ee                        | 0  |                              | 2  | 0,g                 | 1        | uu                              |
|                                    | 02/11/05             |                                   | 50,000                        |                                |                                 |                              |                                 | 3  | a,d,ee                          | 1  | 00                           | 0  |                     | 0        |                                 |
|                                    | 10/25/05             |                                   | 5,000                         |                                |                                 |                              |                                 |    |                                 |    |                              |    |                     | ─        |                                 |
|                                    | 10/14/06             |                                   | 50,000                        |                                |                                 |                              |                                 | 12 |                                 | 0  |                              | 0  |                     | 1        |                                 |
|                                    | 04/16/07             |                                   | 110                           |                                |                                 |                              |                                 | 5  |                                 | 0  |                              | 1  |                     | 0        |                                 |
|                                    | 07/24/07             |                                   | 500,000                       |                                |                                 |                              |                                 | 9  |                                 | 0  |                              | 2  |                     | 2        |                                 |
|                                    | 08/01/07             |                                   | 16,000                        |                                |                                 |                              |                                 | 5  |                                 | 0  |                              | 1  |                     | 0        |                                 |
|                                    | 08/27/07             |                                   | 110,000                       |                                |                                 |                              |                                 | 4  |                                 | 0  |                              | 0  |                     | 4        |                                 |
|                                    | 09/22/07<br>01/27/08 |                                   | 110,000 17,000                |                                |                                 |                              |                                 | 3  |                                 | 0  |                              | 1  |                     | 0        |                                 |
|                                    | 08/07/08             |                                   | 30,000                        |                                |                                 |                              |                                 | 9  |                                 | 1  |                              | 0  |                     | 1        |                                 |
|                                    | 11/26/08             |                                   | 160,000                       |                                |                                 |                              |                                 | 10 |                                 | 2  |                              | 2  |                     | 1        |                                 |
|                                    | 02/07/09             |                                   | 16,000                        |                                |                                 |                              |                                 | 5  |                                 | 1  |                              | 1  |                     | 1        |                                 |
|                                    | 01/20/10             |                                   | 9,000                         |                                |                                 |                              |                                 | 5  |                                 | 1  |                              | 0  |                     | 1        |                                 |
|                                    | 01/27/10             |                                   | 2,200                         |                                |                                 |                              |                                 | 5  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 02/06/10             |                                   | 1,100                         |                                |                                 |                              |                                 | 11 |                                 | 1  |                              | 0  |                     | 0        |                                 |
|                                    | 02/22/10             |                                   | 300                           |                                |                                 |                              |                                 | 0  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 12/20/10             |                                   | 5,000                         |                                |                                 |                              |                                 | 8  | d, e, cc, dd, ee, ddd, eee, fff | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 12/22/10             |                                   | 50,000                        |                                |                                 |                              |                                 |    | / /                             | 1  |                              |    |                     | 1        |                                 |
|                                    | 07/03/11             |                                   | 30,000                        |                                |                                 |                              |                                 |    |                                 | l  |                              |    |                     | 1        |                                 |
|                                    | 09/13/11             |                                   | 16,000                        |                                |                                 |                              |                                 | 4  | d,ff,vv,bbb                     | 1  | gg                           | 2  | x,i                 | 0        | ·                               |
|                                    | 10/03/11             |                                   | > 1,600                       |                                |                                 |                              |                                 | 7  | d,e,dd,ee,qq,vv,bbb             | 0  |                              | 1  | x                   | 0        |                                 |
|                                    | 07/16/12             |                                   | 13,000                        |                                |                                 |                              |                                 | 8  | d, e, dd, ee, qq, vv, bbb, ddd  | 0  |                              | 2  | x, j                | 0        |                                 |
|                                    | 07/31/12             |                                   | 16,000                        |                                |                                 |                              |                                 |    | NA                              |    | NA                           |    | NA                  |          | NA                              |
|                                    | 08/22/12             |                                   | 28,000                        |                                |                                 |                              |                                 | 3  | ff, qq, vv                      | 0  |                              | 1  | х                   | 1        | kkk                             |
|                                    | 09/11/12             |                                   | 54,000                        |                                |                                 |                              |                                 | 5  | a, ff, qq, vv, jjj              | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 10/11/12             |                                   | 170                           |                                |                                 |                              |                                 |    | NA                              |    | NA                           |    | NA                  |          | NA                              |
|                                    | 01/26/13             |                                   | 22,000                        |                                |                                 |                              |                                 |    | NA                              |    | NA                           |    | NA                  |          | NA                              |
|                                    | 07/19/13             |                                   | 11,000                        |                                |                                 |                              |                                 | 7  | a, b,d,qq,vv,ddd, qqq           | 2  | gg,zz                        | 5  | h,j,o,x, aaaa       | 0        |                                 |
|                                    | 08/18/13             |                                   | 100                           |                                |                                 |                              |                                 | 3  | a,vv, yyy                       | 2  | gg,zz                        | 3  | j,x, aaaa           | 0        |                                 |
| Lake Las Vegas & Rainbow Gardens   | 08/25/13             |                                   | 100                           |                                |                                 |                              |                                 |    | NA                              |    | NA                           |    | NA                  | <u> </u> | NA                              |
| LLV Ends 2009-2010 RG Starts 2010- | 11/21/13             |                                   | 20,924                        |                                |                                 |                              |                                 | 9  | a,b,d,qq,vv,bbb,ggg,iii,zzz     | 3  | gg,zz, uuu                   | 5  | h,j,o,x, aaaa       |          | hh,rrr,xx                       |
| 2012                               | 08/04/14             |                                   | 6,830                         |                                |                                 |                              |                                 | 3  | a, d, qq                        | 2  | gg, dddd                     | 3  | h, j, x             | 0        |                                 |
|                                    | 08/20/14             |                                   | 1,080                         |                                |                                 |                              |                                 | 3  | a, d, vv                        | 0  |                              | 3  | j, x, aaaa          | 0        |                                 |
|                                    | 09/08/14             |                                   | 2,560                         |                                |                                 |                              |                                 | 5  | a, b, d, qq, vv                 | 2  | gg, dddd                     | 2  | x, aaaa             | 1        | hh                              |
|                                    | 01/11/15<br>01/30/15 |                                   | 1,105 310                     |                                |                                 |                              |                                 | 0  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 03/02/15             |                                   | 1,850                         |                                |                                 |                              |                                 | 0  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 07/06/15             |                                   | 11,780                        |                                |                                 |                              |                                 | 4  | qq, vv, b, a, d,                | 1  | 00                           | 3  | 77 1 0              | 1        | hh                              |
|                                    | 10/05/15             |                                   | 15,760                        |                                |                                 |                              |                                 | 4  | NA                              | 1  | gg<br>NA                     | 3  | zz, j, o<br>NA      |          | NA                              |
|                                    | 01/31/16             |                                   | 14,670                        |                                |                                 |                              |                                 | 2  |                                 | 1  |                              | 3  |                     | 0        | INA                             |
|                                    | 04/09/16             |                                   | 1,460                         |                                |                                 |                              |                                 | 2  | qq, vv,                         | 2  | gg                           | 4  | 0, j, zz            | 0        |                                 |
|                                    | 04/28/16             |                                   | 1,400                         |                                |                                 |                              |                                 | 2  |                                 | 2  |                              | -  |                     |          |                                 |
|                                    | 08/04/16             |                                   | 17,329                        |                                |                                 |                              |                                 | 4  |                                 | 0  |                              | 3  |                     | 1        |                                 |
|                                    | 08/23/16             |                                   | 41,400                        |                                |                                 |                              |                                 | 4  |                                 | 0  |                              | 1  |                     | 2        |                                 |
|                                    | 12/22/16             |                                   | 10,000                        |                                |                                 |                              |                                 | 4  |                                 | 0  |                              | 1  |                     | 1        |                                 |
|                                    | 01/20/17             |                                   | < 1                           | 1                              |                                 |                              |                                 |    |                                 | Ŭ  |                              |    |                     | +-       |                                 |
|                                    | 02/18/17             |                                   | 83                            |                                |                                 |                              |                                 |    |                                 |    |                              |    |                     | 1        |                                 |
|                                    | 07/17/17             |                                   | ~                             |                                |                                 |                              |                                 |    | NA                              | NA |                              | NA |                     | NA       |                                 |
|                                    | 08/04/17             |                                   | 410                           |                                |                                 |                              |                                 | 2  | ~                               | 0  |                              | 3  |                     | 0        |                                 |
|                                    | 01/09/18             |                                   | 3,950                         |                                |                                 |                              |                                 | 3  | ~                               | 0  |                              | 2  |                     | 0        |                                 |
|                                    | 07/15/18             |                                   | 2,380                         |                                |                                 |                              |                                 | 0  |                                 | 0  |                              | 1  |                     | 0        |                                 |
|                                    | 02/14/19             |                                   | 3,873                         |                                |                                 |                              |                                 | 1  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 11/20/19             |                                   | > 24,196                      |                                |                                 |                              |                                 | 1  |                                 | 1  |                              | 1  |                     | 2        |                                 |
|                                    | 11/28/19             |                                   | > 2,420                       |                                |                                 |                              |                                 | 1  |                                 | 1  |                              | 0  |                     | 2        |                                 |
|                                    | 03/11/20             |                                   | 9,804                         |                                |                                 |                              |                                 | 3  |                                 | 0  |                              | 1  |                     | 1        |                                 |
|                                    | 07/26/21             |                                   | 48,392                        |                                |                                 |                              |                                 | 1  |                                 | 0  |                              | 1  |                     | 0        |                                 |
|                                    | 07/25/22             |                                   | > 24,196                      |                                |                                 |                              |                                 | 0  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 08/12/22             |                                   | 21,600                        |                                |                                 |                              |                                 | 3  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | 06/16/23             |                                   | 7,300                         |                                |                                 | 1,410,000                    |                                 | 0  |                                 | 0  |                              | 2  |                     | 1        |                                 |
|                                    | 09/01/23             |                                   | 13,330                        |                                |                                 | 130,000                      |                                 | 1  |                                 | 0  |                              | 0  |                     | 0        |                                 |
|                                    | Median               |                                   | 12,390                        |                                |                                 | 770,000                      |                                 | 4  |                                 | 0  |                              | 1  |                     | 0        |                                 |
|                                    | Maximum              |                                   | 500,000                       |                                |                                 | 1,410,000                    |                                 | 12 |                                 | 3  |                              | 5  |                     | 4        |                                 |
|                                    | Minimum              |                                   | < 1                           | 1                              |                                 | 130,000                      | 1                               | 0  |                                 | 0  |                              | 0  |                     | 0        |                                 |

|              |          |     |        | Oil &  |       |       | Specific    | Lab   | Surfactants | Ortho-    | Total       |
|--------------|----------|-----|--------|--------|-------|-------|-------------|-------|-------------|-----------|-------------|
| Location     | Date     | Q   | Temp   | Grease | TSS   | TDS   | Conductance | рН    | (MBAS)      | Phosphate | Phosphorous |
|              |          | cfs | Deg. C | mg/L   | mg/L  | mg/L  | umho/cm     | units | mg/L        | mg/L      | mg/L        |
|              | 08/30/92 |     | 26.3   | 4      | 92    | 1,110 |             | 7.2   | 2.67        | < 0.05    | 0.29        |
|              | 10/24/92 |     | 17.3   | 3      | 66    | 760   |             | 7.3   | 1.02        | 0.18      | 0.50        |
|              | 02/08/93 |     | 12.0   | 3      | 950   | 300   |             | 7.9   | 0.24        | 0.26      | 0.55        |
|              | 05/14/93 | 839 | 26.4   | 4      | 110   | 600   |             | 7.2   | 1.64        | 0.19      | 0.51        |
|              | 08/04/93 | 211 | 26.0   | 3      | 840   | 980   |             | 7.6   | 1.13        | 0.06      | 0.88        |
|              | 02/04/94 | 181 | 8.2    | 6      | 3,720 | 400   | 465         | 7.5   | 0.44        | 2.34      | 2.10        |
|              | 03/25/94 | 353 | 12.9   | 10     | 2,800 | 520   | 2,530       |       | 0.73        | 0.75      | 1.40        |
|              | 07/19/94 |     | 23.6   | < 3    | 81    | 400   | 535         | 7.8   | 1.49        | 0.11      | 0.23        |
| Western      | 08/09/94 | 4   | 29.5   | < 3    | 5,550 | 370   | 525         | 7.9   | 0.35        | 0.18      | 0.87        |
| Tributary at | 01/24/95 | 624 | 9.7    | < 3    | 880   | 5,210 | 187         | 8.0   | 0.24        | 0.06      |             |
| Civic Center | 05/24/95 |     | 19.7   | 6      | 125   | 300   | 488         | 7.5   | 1.35        | 0.08      | 0.32        |
|              | 08/12/95 | 583 | 27.5   | 4      | 450   | 690   | 633         | 7.2   | 1.50        | 0.09      | 0.83        |
|              | 03/13/96 |     |        | 4      | 510   | 780   |             | 7.5   |             | 0.45      | 0.97        |
|              | 11/21/96 | 163 | 15.6   | < 3    | 2,500 | 290   | 498         | 7.8   | < 0.05      | 0.59      | 2.80        |
|              | 07/28/97 |     | 25.7   | 6      | 890   | 380   | 588         | 7.7   | 1.84        | 0.11      | 0.30        |
|              | 09/01/97 |     |        | 4      | 290   | 580   |             | 7.5   | 1.75        | < 0.01    | 0.33        |
|              | Median   | 282 | 21.7   | 4      | 675   | 550   | 525         | 7.5   | 1.13        | 0.15      | 0.55        |
|              | Maximum  | 839 | 29.5   | 10     | 5,550 | 5,210 | 2,530       | 8.0   | 2.67        | 2.34      | 2.80        |
|              | Minimum  | 4   | 8.2    | < 3    | 66    | 290   | 187         | 7.2   | < 0.05      | < 0.01    | 0.23        |

|              |          |       |      |        |       | Total    |        | Dissolved |          |         | Dissolved |          |
|--------------|----------|-------|------|--------|-------|----------|--------|-----------|----------|---------|-----------|----------|
| Location     | Date     | NO3-N | NO-2 | NH3-N  | TKN   | Nitrogen | Copper | Copper    | Chromium | Lead    | Lead      | Mercury  |
|              |          | mg/L  | mg/L | mg/L   | mg/L  | mg/L     | mg/L   | mg/L      | mg/L     | mg/L    | mg/L      | mg/L     |
|              | 08/30/92 | 3.9   |      | 0.66   | 9.8   | 13.7     | 0.024  |           | < 0.010  | < 0.010 |           | < 0.0002 |
|              | 10/24/92 | 2.9   |      | 0.73   | 6.2   | 9.1      | 0.017  |           | < 0.010  | < 0.010 |           | < 0.0002 |
|              | 02/08/93 | 1.1   |      | 0.30   | 1.1   | 2.2      | 0.018  |           | 0.024    | 0.018   |           | < 0.0002 |
|              | 05/14/93 | 2.4   |      | 1.30   | 5.5   | 7.9      | 0.015  |           | < 0.010  | 0.009   |           | < 0.0002 |
|              | 08/04/93 | 2.1   |      | 1.40   | 6.6   | 8.7      | 0.033  |           | 0.027    | 0.022   |           | < 0.0002 |
|              | 02/04/94 | 1.1   |      | 1.10   | 16.0  | 17.1     | 0.092  |           | 0.050    | 0.150   |           | 0.0008   |
|              | 03/25/94 | 1.2   |      | 1.10   | 6.7   | 7.9      | 0.058  |           | 0.033    | 0.076   |           | < 0.0002 |
|              | 07/19/94 | 1.4   |      | 0.47   | < 1.0 | 2.4      | 0.016  |           | < 0.010  | 0.006   |           | < 0.0002 |
| Western      | 08/09/94 | 1.4   |      | 0.47   | 2.7   | 4.1      | 0.052  |           | 0.035    | 0.140   |           | < 0.0002 |
| Tributary at | 01/24/95 | 4.5   |      | < 0.05 | < 1.0 | 5.5      | 0.012  |           | < 0.010  | < 0.100 |           | < 0.0002 |
| Civic Center | 05/24/95 | 1.2   |      | 0.60   | 4.9   | 6.1      | 0.023  |           | < 0.010  | 0.020   |           | < 0.0002 |
|              | 08/12/95 | 0.9   |      | 0.60   | 7.2   | 8.1      | 0.042  |           | 0.013    | 0.025   |           | < 0.0002 |
|              | 03/13/96 | 1.7   |      | 0.90   | 6.2   | 2.6      | 0.041  |           |          |         |           |          |
|              | 11/21/96 | 1.7   |      | 0.80   | 11.0  | 12.7     | 0.038  |           |          | < 0.100 |           |          |
|              | 07/28/97 | 1.6   |      | 1.20   | 4.8   | 6.4      | 0.100  |           |          | 0.170   |           |          |
|              | 09/01/97 | 1.0   |      | 0.90   | 7.2   | 8.2      | 0.044  |           |          | < 0.100 |           |          |
|              | Median   | 1.5   |      | 0.77   | 6.2   | 7.9      | 0.04   |           | 0.012    | 0.03    |           | < 0.0002 |
|              | Maximum  | 4.5   |      | 1.40   | 16.0  | 17.1     | 0.10   |           | 0.050    | 0.17    |           | 0.0008   |
|              | Minimum  | 0.9   |      | < 0.05 | < 1.0 | 2.2      | 0.01   |           | < 0.010  | < 0.01  |           | < 0.0002 |

|              |          |         |      | Dissolved |        |         |          |         |       |         |      |
|--------------|----------|---------|------|-----------|--------|---------|----------|---------|-------|---------|------|
| Location     | Date     | Cadmium | Zinc | Zinc      | Silver | Nickel  | Selenium | Arsenic | Boron | Cyanide | BOD  |
|              |          | mg/L    | mg/L | mg/L      | mg/L   | mg/L    | mg/L     | mg/L    | mg/L  | mg/L    | mg/L |
|              | 08/30/92 | < 0.005 | 0.06 |           | < 0.01 | < 0.040 |          | < 0.025 | 0.42  | 0.029   | 85   |
|              | 10/24/92 | < 0.005 | 0.07 |           | < 0.01 | < 0.040 |          | < 0.025 | 0.25  | 0.009   | 31   |
|              | 02/08/93 | < 0.005 | 0.27 |           | < 0.01 | < 0.040 | < 0.005  | 0.010   | 0.14  | < 0.005 | 25   |
|              | 05/14/93 | < 0.005 | 0.08 |           | < 0.01 | < 0.040 | < 0.005  | 0.005   | 0.27  | 0.010   | 63   |
|              | 08/04/93 | < 0.005 | 0.18 |           | < 0.01 | 0.021   | < 0.005  | 0.011   | 0.05  | 0.008   | 83   |
|              | 02/04/94 | < 0.005 | 0.44 |           | < 0.01 | 0.023   | < 0.020  | 0.027   | 0.23  | < 0.005 | 57   |
|              | 03/25/94 | < 0.005 | 0.32 |           | < 0.01 | 0.020   | < 0.005  | 0.016   | 0.17  | < 0.005 | 59   |
|              | 07/19/94 | < 0.005 | 0.05 |           | < 0.01 | 0.011   | < 0.005  | < 0.005 | 0.16  | 0.009   | 110  |
| Western      | 08/09/94 | < 0.005 | 0.24 |           | < 0.01 | 0.025   | < 0.005  | 0.050   | 0.19  | < 0.005 | 19   |
| Tributary at | 01/24/95 | < 0.005 | 0.06 |           | < 0.01 | < 0.010 | < 0.005  |         | 2.40  | 0.007   | < 6  |
| Civic Center | 05/24/95 | < 0.005 | 0.09 |           | < 0.01 | 0.011   | < 0.005  | < 0.005 | 0.18  | 0.010   | 35   |
|              | 08/12/95 | < 0.005 | 0.20 |           | < 0.01 | 0.020   | < 0.005  | 0.007   | 0.28  | 0.030   | 77   |
|              | 03/13/96 |         | 0.12 |           |        |         |          |         | 0.27  | 0.009   | 52   |
|              | 11/21/96 |         | 0.24 |           |        |         |          |         | 0.19  | < 0.005 | 45   |
|              | 07/28/97 |         | 0.63 |           |        |         |          |         | 0.21  | < 0.005 | 36   |
|              | 09/01/97 |         | 0.16 |           |        |         |          |         | 0.25  | 0.052   | 38   |
|              | Median   | < 0.005 | 0.17 |           | < 0.01 | 0.022   | < 0.005  | 0.011   | 0.22  | 0.009   | 49   |
|              | Maximum  | < 0.005 | 0.63 |           | < 0.01 | 0.040   | < 0.020  | 0.050   | 2.40  | 0.052   | 110  |
|              | Minimum  | < 0.005 | 0.05 |           | < 0.01 | < 0.010 | < 0.005  | < 0.005 | 0.05  | < 0.005 | < 6  |

|              |          |      |       |           |        | Petroleum    | ТРН        | ТРН        | Total    |
|--------------|----------|------|-------|-----------|--------|--------------|------------|------------|----------|
| Location     | Date     | COD  | Color | Turbidity | Phenol | Hydrocarbons | (diesel)   | (gasoline) | Chlorine |
|              |          | mg/L | ACU   | NTU       | mg/L   |              | MPN/100 mL | MPN/100 mL | mg/L     |
|              | 08/30/92 | 559  | 313   | 60        | 0.09   |              |            |            | < 0.10   |
|              | 10/24/92 | 210  | 90    | 45        | 0.04   |              |            |            | < 0.10   |
|              | 02/08/93 | 98   | 25    | 750       | 0.10   |              |            |            | < 0.10   |
|              | 05/14/93 | 220  | 200   | 70        | 0.10   |              |            |            | < 0.10   |
|              | 08/04/93 | 390  | 400   | 130       | 0.20   |              |            |            | < 0.10   |
|              | 02/04/94 | 475  | 750   | 950       | 0.10   |              |            |            | < 0.10   |
|              | 03/25/94 | 310  | 1,000 | 1,200     | 0.04   |              |            |            | < 0.10   |
|              | 07/19/94 | 215  | 150   | 44        | 0.08   |              |            |            | 0.10     |
| Western      | 08/09/94 | 300  | 75    | 7         | < 0.01 |              |            |            | 0.10     |
| Tributary at | 01/24/95 | 23   | 10    | 100       | 0.10   |              | < 1        | < 1        | < 0.01   |
| Civic Center | 05/24/95 | 215  | 40    | 68        | 0.02   | < 1          |            |            | < 0.01   |
|              | 08/12/95 | 345  | 250   | 11        | < 0.10 |              | < 2        | < 2        | < 0.01   |
|              | 03/13/96 | 250  | 100   | 32        |        |              |            |            | 0.05     |
|              | 11/21/96 | 400  | 80    | 5,600     | < 0.01 | < 1          |            |            | < 0.01   |
|              | 07/28/97 | 930  | 110   | 600       | < 0.01 | < 1          |            |            | < 0.10   |
|              | 09/01/97 | 160  | 128   | 160       | 0.02   |              |            |            |          |
|              | Median   | 275  | 119   | 85        | 0.08   | < 1          | < 2        | < 2        | < 0.1    |
|              | Maximum  | 930  | 1,000 | 5,600     | 0.20   | < 1          | < 2        | < 2        | 0.1      |
|              | Minimum  | 23   | 10    | 7         | < 0.01 | < 1          | < 1        | < 1        | < 0.01   |

| Location     | Date     | Fecal<br>Coliform | Fecal*<br>Coliform | Fecal**<br>Coliform | Fecal<br>Strep. | Fecal*<br>Strep. | Fecal**<br>Strep. | Salmonella |
|--------------|----------|-------------------|--------------------|---------------------|-----------------|------------------|-------------------|------------|
|              |          | MPN/100 mL        | MPN/100 mL         | MPN/100 mL          | MPN/100 mL      | MPN/100 mL       | MPN/100 mL        | MPN/100 mL |
|              | 08/30/92 | < 160,000         |                    |                     | > 16            |                  |                   |            |
|              | 10/24/92 | 130,000           |                    |                     | 300,000         |                  |                   |            |
|              | 02/08/93 | 30,000            | 5,000              |                     | 22,000          | 30,000           |                   |            |
|              | 05/14/93 | 5,000,000         | 240,000            | 13,000              | 1,700,000       | 160,000          | 50,000            |            |
|              | 08/04/93 | 30,000            | 110,000            | 500,000             | 160,000         | 500,000          | 700,000           |            |
|              | 02/04/94 | 3,000             | 500                |                     | 90,000          | 28,000           |                   |            |
|              | 03/25/94 | < 2               | 8,000              | 8,000               | 50,000          | 230,000          | 90,000            | < 2.0      |
|              | 07/19/94 |                   | > 160,000          | 1,600,000           |                 | 50,000           | 140,000           | 8.0        |
| Western      | 08/09/94 |                   | 80,000             | 2,300               |                 | 130,000          | 50,000            | < 2.0      |
| Tributary at | 01/24/95 |                   |                    | 5,000               |                 |                  | 22,000            | < 2.0      |
| Civic Center | 05/24/95 |                   |                    | > 160,000           |                 |                  | > 160,000         | 2.0        |
|              | 08/12/95 |                   |                    |                     |                 |                  | > 1,600           | 6.0        |
|              | 03/13/96 | 5,000             |                    |                     | 11,000          |                  |                   | < 2.2      |
|              | 11/21/96 | 40,000            |                    |                     | 50,000          |                  |                   | < 2.2      |
|              | 07/28/97 | 160,000           |                    |                     | 90,000          |                  |                   | 5.1        |
|              | 09/01/97 | 160,000           |                    |                     | 90,000          |                  |                   | < 2.2      |
|              | Median   | 40,000            | 80,000             | 13,000              | 90,000          | 130,000          | 70,000            | < 2.2      |
|              | Maximum  | 5,000,000         | 240,000            | 1,600,000           | 1,700,000       | 500,000          | 700,000           | 8.0        |
|              | Minimum  | < 2               | 500                | 2300                | 16              | 28,000           | 1,600             | < 2.0      |

| Location     | Date     | <b>VOC</b><br># of detects | <b>Pesticides</b><br># of detects | SOC<br># of detects | Herbicides<br># of detects |
|--------------|----------|----------------------------|-----------------------------------|---------------------|----------------------------|
|              | 08/30/92 |                            |                                   |                     |                            |
|              | 10/24/92 |                            |                                   |                     |                            |
|              | 02/08/93 |                            |                                   |                     |                            |
|              | 05/14/93 |                            |                                   |                     |                            |
|              | 08/04/93 |                            |                                   |                     |                            |
|              | 02/04/94 |                            |                                   |                     |                            |
|              | 03/25/94 |                            |                                   |                     |                            |
|              | 07/19/94 |                            |                                   |                     |                            |
| Western      | 08/09/94 |                            |                                   |                     |                            |
| Tributary at | 01/24/95 |                            |                                   |                     |                            |
| Civic Center | 05/24/95 |                            |                                   |                     |                            |
|              | 08/12/95 |                            |                                   |                     |                            |
|              | 03/13/96 |                            |                                   |                     |                            |
|              | 11/21/96 |                            | 0                                 |                     | 1 hh                       |
|              | 07/28/97 |                            | 0                                 |                     | 1                          |
|              | 09/01/97 |                            | 0                                 |                     | 1                          |
|              | Median   |                            |                                   |                     |                            |
|              | Maximum  |                            |                                   |                     |                            |
|              | Minimum  |                            |                                   |                     |                            |

|                             |          |     |        | Oil &  |       |       | Specific    | Lab   |
|-----------------------------|----------|-----|--------|--------|-------|-------|-------------|-------|
| Location                    | Date     | Q   | Temp   | Grease | TSS   | TDS   | Conductance | pН    |
|                             |          | cfs | Deg. C | mg/L   | mg/L  | mg/L  | umho/cm     | units |
|                             | 08/30/92 | 75  | 27.1   | 4      | 550   | 830   |             | 7.2   |
|                             | 10/24/92 | 204 | 17.5   | 4      | 500   | 530   |             | 7.3   |
|                             | 10/28/92 | 76  | 18.1   | < 3    | 460   | 440   |             | 7.4   |
|                             | 02/08/93 | 454 | 11.1   | 64     | 300   | 190   |             | 7.8   |
|                             | 05/14/93 | 138 | 26.9   | 7      | 220   | 490   |             | 7.1   |
|                             | 08/04/93 | 34  | 30.7   | < 3    | 560   | 1,070 |             | 7.1   |
|                             | 02/04/94 | 114 | 8.2    | 5      | 1,050 | 320   | 984         | 7.6   |
|                             | 09/19/94 |     | 22.0   | 5      | 230   | 880   | 950         | 7.3   |
|                             | 03/11/95 | 23  | 13.4   | 4      | 93    | 150   | 1,150       | 7.6   |
|                             | 05/24/95 | 24  | 26.5   | 12     | 330   | 270   | 680         | 7.5   |
| L. W. G. L                  | 08/20/95 | 4   | 26.7   | 4      | 42    | 520   | 883         | 7.3   |
| Las Vegas Creek<br>at Pecos | 05/24/96 |     | 17.8   | 15     | 490   | 500   | 500         | 7.0   |
| or Lena                     | 07/15/96 | 148 | 27.0   | 23     | 480   | 470   |             | 7.4   |
| or Lena                     | 02/24/98 |     | 12.0   | < 3    | 200   | 100   |             | 8.0   |
|                             | 03/26/98 |     | 15.2   | < 3    | 1,390 | 200   | 570         | 8.2   |
|                             | 09/22/99 |     |        | 4      | 950   | 100   |             |       |
|                             | 02/12/03 |     |        | < 3    | 110   | 130   | 200         | 7.4   |
|                             | 07/25/03 |     |        |        | 880   | 580   |             |       |
|                             | 08/16/03 |     |        |        | 1,570 | 580   |             |       |
|                             | 08/16/04 |     |        | < 5    | 3,020 | 340   | 401         | 7.6   |
|                             | 01/03/05 |     |        | 5      | 51    | 120   | 177         | 7.7   |
|                             | Median   | 76  | 18.1   | 4      | 480   | 440   | 625         | 7.4   |
|                             | Maximum  | 454 | 30.7   | 64     | 3,020 | 1,070 | 1,150       | 8.2   |
|                             | Minimum  | 4   | 8.2    | < 3    | 42    | 100   | 177         | 7.0   |

| Location                    | Date     | Surfactants<br>(MBAS) | Ortho-<br>Phosphate | Total<br>Phosphorous | NO3-N | NO-2   | NH3-N | TKN   | Total<br>Nitrogen |
|-----------------------------|----------|-----------------------|---------------------|----------------------|-------|--------|-------|-------|-------------------|
|                             |          | mg/L                  | mg/L                | mg/L                 | mg/L  | mg/L   | mg/L  | mg/L  | mg/L              |
|                             | 08/30/92 | 3.10                  | 0.06                | 1.10                 | 1.80  |        | 0.42  | 9.5   | 11.3              |
|                             | 10/24/92 | 1.89                  | 0.55                | < 0.05               | 1.80  |        | 1.20  | 8.8   | 10.6              |
|                             | 10/28/92 | 1.12                  | 0.18                | 0.51                 | 1.40  |        | 0.33  | 3.7   | 5.1               |
|                             | 02/08/93 | 0.17                  | 0.25                | 0.55                 | 0.70  |        | 0.22  | 1.1   | 1.8               |
|                             | 05/14/93 | 1.34                  | 0.36                | 1.00                 | 0.10  |        | 2.30  | 6.5   | 6.6               |
|                             | 08/04/93 | 1.41                  | 0.12                | 0.96                 | 1.50  |        | 2.40  | 10.0  | 11.5              |
|                             | 02/04/94 | 0.83                  | 0.87                | 1.50                 | 1.30  |        | 0.92  | 5.3   | 6.6               |
|                             | 09/19/94 | 1.00                  | 0.78                | 1.50                 | 4.30  |        | 1.70  | 13.0  | 17.3              |
|                             | 03/11/95 | 0.25                  | 0.21                | 0.36                 | 0.40  |        | 0.20  | 1.6   | 2.0               |
|                             | 05/24/95 | 0.87                  | 0.21                | 1.15                 | 1.40  |        | 0.70  | 7.2   | 8.6               |
|                             | 08/20/95 | 1.55                  | 0.20                | 0.55                 | 1.10  |        | 0.30  | 5.0   | 6.1               |
| Las Vegas Creek<br>at Pecos | 05/24/96 | 4.74                  | 6.50                | 7.00                 | 3.40  |        | 1.90  | 10.0  | 11.9              |
| or Lena                     | 07/15/96 |                       | 0.68                | 0.94                 |       |        | 1.20  | 8.5   | 8.7               |
| of Lena                     | 02/24/98 | < 0.50                | 0.20                | 0.46                 | 0.58  |        | 0.30  | < 1.0 | 0.6               |
|                             | 03/26/98 | 0.73                  | 0.54                | 0.85                 | 0.56  |        | 0.23  | 3.2   | 3.8               |
|                             | 09/22/99 |                       |                     | 0.61                 | 0.68  |        | 0.32  | 2.9   | 3.6               |
|                             | 02/12/03 | 0.36                  |                     |                      | 0.71  | < 0.10 |       | 1.9   | 2.6               |
|                             | 07/25/03 |                       |                     |                      | 2.70  | 0.23   |       | 18.0  | 20.9              |
|                             | 08/16/03 |                       | 0.29                | 2.40                 | 1.40  | 0.13   |       | 10.0  | 11.5              |
|                             | 08/16/04 | 0.22                  | 0.15                | 1.70                 | 2.40  | < 0.50 |       | 8.9   | 11.3              |
|                             | 01/03/05 | 0.41                  | 0.10                | 0.20                 | 0.50  | < 0.10 |       | 1.0   | 1.5               |
|                             | Median   | 0.87                  | 0.23                | 0.94                 | 1.35  | 0.13   | 0.56  | 6.5   | 6.6               |
| [                           | Maximum  | 4.74                  | 6.50                | 7.00                 | 4.30  | 0.50   | 2.40  | 18.0  | 20.9              |
|                             | Minimum  | 0.17                  | 0.06                | < 0.05               | 0.10  | < 0.10 | 0.20  | < 1.0 | 0.6               |

|                             |          |         | Dissolved |          |         | Dissolved |          |          |       | Dissolved |          |
|-----------------------------|----------|---------|-----------|----------|---------|-----------|----------|----------|-------|-----------|----------|
| Location                    | Date     | Copper  | Copper    | Chromium | Lead    | Lead      | Mercury  | Cadmium  | Zinc  | Zinc      | Silver   |
|                             |          | mg/L    | mg/L      | mg/L     | mg/L    | mg/L      | mg/L     | mg/L     | mg/L  | mg/L      | mg/L     |
|                             | 08/30/92 | 0.010   |           | 0.019    | 0.072   |           | < 0.0002 | < 0.0050 | 0.32  |           | < 0.0100 |
|                             | 10/24/92 | 0.190   |           | 0.057    | 0.280   |           | 0.0060   | < 0.0050 | 0.96  |           | < 0.0100 |
|                             | 10/28/92 | 0.055   |           | 0.019    | 0.071   |           | < 0.0002 | < 0.0050 | 0.28  |           | < 0.0100 |
|                             | 02/08/93 | 0.019   |           | < 0.010  | 0.036   |           | < 0.0002 | < 0.0050 | 0.29  |           | < 0.0100 |
|                             | 05/14/93 | 0.027   |           | < 0.010  | 0.026   |           | < 0.0002 | < 0.0050 | 0.15  |           | < 0.0100 |
|                             | 08/04/93 | 0.078   |           | 0.021    | 0.078   |           | < 0.0002 | < 0.0050 | 0.38  |           | < 0.0100 |
|                             | 02/04/94 | 0.047   |           | 0.018    | 0.057   |           | 0.0003   | < 0.0050 | 0.23  |           | < 0.0100 |
|                             | 09/19/94 | 0.057   |           | 0.015    | 0.053   |           | < 0.0002 | < 0.0050 | 0.30  |           | < 0.0100 |
|                             | 03/11/95 | < 0.010 |           | < 0.010  | 0.017   |           | < 0.0002 | < 0.0050 | 0.08  |           | < 0.0100 |
|                             | 05/24/95 | 0.098   |           | 0.023    | 0.140   |           | < 0.0002 | < 0.0050 | 0.59  |           | < 0.0100 |
| Log Vogog Crock             | 08/20/95 | 0.024   |           | < 0.010  | 0.008   |           | < 0.0002 | < 0.0050 | 0.12  |           | < 0.0100 |
| Las Vegas Creek<br>at Pecos | 05/24/96 | 0.070   |           |          |         |           |          |          | 0.43  |           |          |
| or Lena                     | 07/15/96 | 0.091   |           |          | < 0.100 |           |          |          | 0.35  |           |          |
| of Lenu                     | 02/24/98 | 0.013   |           |          | < 0.100 |           |          |          | 0.07  |           |          |
|                             | 03/26/98 | 0.012   |           |          | < 0.100 |           |          |          | 0.11  |           |          |
|                             | 09/22/99 | 0.049   | < 0.010   |          | < 0.100 | < 0.10    |          |          | 0.29  | < 0.200   |          |
|                             | 02/12/03 | 0.020   | < 0.010   | 0.004    | 0.008   | < 0.10    | < 0.0002 | 0.0011   | 0.09  | < 0.200   | < 0.0005 |
|                             | 07/25/03 | 0.066   | < 0.010   |          | 0.043   | < 0.10    |          |          | 0.45  | 0.042     |          |
|                             | 08/16/03 | 0.220   | < 0.010   |          | 0.120   | < 0.10    |          |          | 1.00  | 0.020     |          |
|                             | 08/16/04 | 0.170   | < 0.010   | 0.004    | 0.099   | < 0.02    | 0.0002   | < 0.0025 | 0.85  | 0.021     | < 0.0025 |
|                             | 01/03/05 | 0.020   | < 0.010   | 0.004    | 0.006   | < 0.02    | < 0.0002 | < 0.0005 | 0.07  | < 0.020   | < 0.0005 |
|                             | Median   | 0.049   | < 0.010   | 0.013    | 0.072   | < 0.10    | < 0.0002 | < 0.005  | 0.290 | 0.032     | < 0.010  |
|                             | Maximum  | 0.220   | < 0.010   | 0.057    | 0.280   | < 0.10    | 0.006    | < 0.005  | 1.0   | 0.2       | 0.010    |
|                             | Minimum  | < 0.010 | < 0.010   | 0.004    | 0.006   | < 0.02    | < 0.0002 | < 0.001  | 0.070 | < 0.02    | < 0.001  |

| Location                    | Date     |   | Nickel<br>mg/L | s | <b>elenium</b><br>mg/L |   | Arsenic<br>mg/L |   | <b>Boron</b><br>mg/L | 0 | C <b>yanide</b><br>mg/L | <b>BOD</b><br>ng/L | COI<br>mg/I | <b>Color</b><br>ACU | <b>Turbidity</b><br>NTU |   | <b>Phenol</b><br>mg/L |
|-----------------------------|----------|---|----------------|---|------------------------|---|-----------------|---|----------------------|---|-------------------------|--------------------|-------------|---------------------|-------------------------|---|-----------------------|
|                             | 08/30/92 | < | 0.040          |   | -                      | < | 0.025           |   | 0.43                 |   | 0.032                   | 80                 | 760         | 300                 | 275                     |   | 0.10                  |
|                             | 10/24/92 | < | 0.040          |   |                        | < | 0.025           |   | 0.26                 |   | 0.024                   | 69                 | 500         | 120                 | 340                     |   | 0.10                  |
|                             | 10/28/92 | < | 0.040          |   |                        | < | 0.025           |   | 0.22                 |   | 0.015                   | 35                 | 195         | 5                   | 300                     |   | 0.03                  |
|                             | 02/08/93 | < | 0.040          | < | 0.005                  | < | 0.005           |   | 0.08                 | < | 0.005                   | 27                 | 230         | 15                  | 180                     |   | 0.10                  |
|                             | 05/14/93 | < | 0.020          | < | 0.005                  | < | 0.005           |   | 0.27                 |   | 0.011                   | 86                 | 400         | 320                 | 90                      |   | 0.20                  |
|                             | 08/04/93 |   | 0.020          |   | 0.017                  |   | 0.015           |   | 0.30                 |   | 0.011                   | 115                | 690         | 560                 | 65                      |   | 0.10                  |
|                             | 02/04/94 | < | 0.020          | < | 0.010                  |   | 0.008           |   | 0.15                 |   | 0.006                   | 57                 | 360         | 100                 | 350                     |   | 0.10                  |
|                             | 09/19/94 |   | 0.026          | < | 0.005                  |   | 0.008           |   | 0.40                 |   | 0.016                   | 99                 | 720         | 500                 | 20                      |   | 0.06                  |
|                             | 03/11/95 | < | 0.010          | < | 0.005                  | < | 0.005           |   | 0.10                 | < | 0.005                   | 10                 | 85          | 50                  | 62                      | < | 0.10                  |
|                             | 05/24/95 |   | 0.016          | < | 0.005                  |   | 0.007           |   | 0.13                 |   | 0.005                   | 34                 | 295         | 30                  | 270                     |   | 0.02                  |
| Les Veren Couch             | 08/20/95 |   | 0.011          | < | 0.005                  |   | 0.007           |   | 0.19                 | < | 0.005                   | 29                 | 245         | 200                 |                         |   | 0.10                  |
| Las Vegas Creek<br>at Pecos | 05/24/96 |   |                |   |                        |   |                 |   | 0.30                 |   | 0.010                   | 265                | 550         | 175                 | 8                       |   | 0.09                  |
| or Lena                     | 07/15/96 |   |                |   |                        |   |                 |   | 0.19                 | < | 0.005                   | 58                 | 380         | 300                 | 190                     | < | 0.01                  |
| of Lena                     | 02/24/98 |   |                |   |                        |   |                 |   | 0.06                 | < | 0.005                   | 17                 | 100         | 15                  | 132                     | < | 0.01                  |
|                             | 03/26/98 |   |                |   |                        |   |                 |   | 0.08                 | < | 0.005                   | 27                 | 130         | 30                  | 720                     | < | 0.01                  |
|                             | 09/22/99 |   |                |   |                        |   |                 |   | 0.06                 |   |                         |                    |             |                     |                         |   |                       |
|                             | 02/12/03 | < | 0.005          | < | 0.005                  | < | 0.002           | < | 0.05                 |   |                         |                    |             |                     |                         |   |                       |
|                             | 07/25/03 |   |                |   |                        |   |                 |   | 0.22                 |   |                         |                    |             |                     |                         |   |                       |
|                             | 08/16/03 |   |                |   |                        |   |                 |   | 0.15                 |   |                         |                    |             |                     |                         |   |                       |
|                             | 08/16/04 |   | 0.036          | < | 0.025                  |   | 0.015           |   | 0.14                 |   |                         |                    |             |                     |                         |   |                       |
| [                           | 01/03/05 | < | 0.005          | < | 0.010                  | < | 0.002           |   | 0.06                 |   |                         |                    |             |                     |                         |   |                       |
|                             | Median   | < | 0.020          | < | 0.005                  |   | 0.008           |   | 0.15                 |   | 0.006                   | 57                 | 360         | 120                 | 185                     | < | 0.10                  |
| [                           | Maximum  | < | 0.040          | < | 0.025                  |   | 0.025           |   | 0.43                 |   | 0.032                   | 265                | 760         | 560                 | 720                     |   | 0.20                  |
| [                           | Minimum  | < | 0.005          | < | 0.005                  | < | 0.002           | < | 0.05                 | < | 0.005                   | 10                 | 85          | 5                   | 8                       | < | 0.01                  |

|                             |          | Petroleum   | ТРН        | ТРН        | Total    | Fecal       | Fecal*     | Fecal**    | Fecal      | Fecal*     |
|-----------------------------|----------|-------------|------------|------------|----------|-------------|------------|------------|------------|------------|
| Location                    | Date     | Hydrocarbon | (diesel)   | (gasoline) | Chlorine | Coliform    | Coliform   | Coliform   | Strep.     | Strep.     |
|                             |          |             | MPN/100 mL | MPN/100 mL | mg/L     | MPN/100 mL  | MPN/100 mL | MPN/100 mL | MPN/100 mL | MPN/100 mL |
|                             | 08/30/92 |             |            |            | < 0.10   | 160,000     |            |            | > 16       |            |
|                             | 10/24/92 |             |            |            | < 0.10   | 700,000     |            |            | 500,000    |            |
|                             | 10/28/92 |             |            |            | < 0.10   | 80,000      |            |            | 500,000    |            |
|                             | 02/08/93 |             |            |            | < 0.10   | 17,000      | 8,000      | 13,000     | 160,000    | 30,000     |
|                             | 05/14/93 |             |            |            | < 0.10   | 5,000,000   | 1,700,000  | 300,000    | 6,000,000  | 1,300,000  |
|                             | 08/04/93 |             |            |            | < 0.10   | 5,000,000   | 300,000    | 1,300,000  | 160,000    | 1,700,000  |
|                             | 02/04/94 |             |            |            | < 0.10   | 2,200       | 2,400      |            | 35,000     | 1,300      |
|                             | 09/19/94 |             |            |            | < 0.01   |             |            | 900,000    |            |            |
|                             | 03/11/95 |             | < 1        | < 1        | < 0.01   |             |            | 24,000     |            |            |
|                             | 05/24/95 | < 1         |            |            | < 0.01   |             |            | 160,000    |            |            |
| Les Veres Creek             | 08/20/95 |             | < 1        | < 1        | 0.20     |             |            | 28,000     |            |            |
| Las Vegas Creek<br>at Pecos | 05/24/96 |             |            |            |          | 11,000      |            |            | > 16,000   |            |
| or Lena                     | 07/15/96 |             |            |            | < 0.01   | 3,000,000   |            |            | 80,000     |            |
| of Lena                     | 02/24/98 | < 1         |            |            | 0.10     | 5,000       |            |            | 13,000     |            |
|                             | 03/26/98 | < 1         |            |            | < 0.10   | 160,000     |            |            | 90,000     |            |
|                             | 09/22/99 |             |            |            |          | 8,000       |            |            | 170,000    |            |
|                             | 02/12/03 |             |            |            |          | 5,000       |            |            | 90,000     |            |
|                             | 07/25/03 |             |            |            |          | 900,000     |            |            | 500,000    |            |
|                             | 08/16/03 |             |            |            |          | 1,600,000   |            |            | 240,000    |            |
|                             | 08/16/04 |             |            |            |          | > 1,600,000 |            |            | 220,000    |            |
|                             | 01/03/05 |             |            |            |          | 1,300       |            |            | 11,000     |            |
|                             | Median   | < 1         | < 1        | < 1        | < 0.10   | 160,000     | 154,000    | 160,000    | 160,000    | 665,000    |
|                             | Maximum  | < 1         | < 1        | < 1        | 0.20     | 5,000,000   | 1,700,000  | 1,300,000  | 6,000,000  | 1,700,000  |
|                             | Minimum  | < 1         | < 1        | < 1        | < 0.01   | 1,300       | 2,400      | 13,000     | 16         | 1,300      |

|                             |          | Fecal**    |            |              |              |                   |              |
|-----------------------------|----------|------------|------------|--------------|--------------|-------------------|--------------|
| Location                    | Date     | Strep.     | Salmonella | VOC          | Pesticides   | SOC               | Herbicides   |
|                             |          | MPN/100 mL | MPN/100 mL | # of detects | # of detects | # of detects      | # of detects |
|                             | 08/30/92 |            |            |              |              |                   |              |
|                             | 10/24/92 |            |            |              |              |                   |              |
|                             | 10/28/92 |            |            |              |              |                   |              |
|                             | 02/08/93 | 5,000      |            |              |              |                   |              |
|                             | 05/14/93 | 3,000,000  |            |              |              |                   |              |
|                             | 08/04/93 | 3,000,000  |            |              |              |                   |              |
|                             | 02/04/94 |            |            |              |              |                   |              |
|                             | 09/19/94 | 160,000    | < 2        |              |              |                   |              |
|                             | 03/11/95 | 160,000    | 22         |              |              |                   |              |
|                             | 05/24/95 | > 160,000  | < 2        |              |              |                   |              |
| L V C                       | 08/20/95 | 90,000     | 7          |              |              |                   |              |
| Las Vegas Creek<br>at Pecos | 05/24/96 |            | 160        |              | 1            |                   |              |
| or Lena                     | 07/15/96 |            | 9          |              | 0            |                   | 0            |
| of Lena                     | 02/24/98 |            | < 2        |              | 0            |                   | 1            |
|                             | 03/26/98 |            | < 2        |              | 1            |                   | 4            |
|                             | 09/22/99 |            |            | 1 e          |              |                   | 0            |
|                             | 02/12/03 |            |            | 1 a          | 0            | 4 g,k,n,x         | 0            |
|                             | 07/25/03 |            |            | 1 k          | 4            | 7                 | 2            |
|                             | 08/16/03 |            |            | 2 k,l        | 0            | 7                 | 0            |
|                             | 08/16/04 |            |            | 1 a          | 0            | 5 x,h,o,l         | 3 y,uu,xx    |
|                             | 01/03/05 |            |            | 0            | 0            | 8 x,o,i, nn,g,l.k | 3 hh,uu.xx   |
|                             | Median   | 160,000    | 5          |              |              |                   |              |
|                             | Maximum  | 3,000,000  | 160        |              |              |                   |              |
|                             | Minimum  | 5,000      | < 2        |              |              |                   |              |

|                 |          |     |        | Oil &  |        |       | Specific    | Lab   | Surfactants | Ortho-    |  |
|-----------------|----------|-----|--------|--------|--------|-------|-------------|-------|-------------|-----------|--|
| Location        | Date     | Q   | Temp   | Grease | TSS    | TDS   | Conductance | pН    | (MBAS)      | Phosphate |  |
|                 |          | cfs | Deg. C | mg/L   | mg/L   | mg/L  | umho/cm     | units | mg/L        | mg/L      |  |
|                 | 08/30/92 | 30  | 27.1   | < 3    | 120    | 4,590 |             | 7.8   | 0.64        | < 0.05    |  |
|                 | 10/24/92 | 73  | 17.7   | < 3    | 130    | 4,670 |             | 7.6   | 0.62        | 0.06      |  |
|                 | 02/08/93 | 43  | 11.5   | < 3    | 23     | 4,700 |             | 8.1   | < 0.10      | < 0.05    |  |
|                 | 08/04/93 | 15  | 27.5   | < 3    | 150    | 5,150 |             | 7.3   | 0.54        | < 0.05    |  |
|                 | 02/04/94 | 22  | 9.0    | < 3    | 4,430  | 3,360 | 7,380       | 7.5   | 0.15        | 2.26      |  |
|                 | 03/25/94 | 22  | 17.3   | < 3    | 240    | 3,990 | 17,480      | 7.7   | 0.23        | 0.11      |  |
|                 | 07/19/94 | 38  | 23.0   | < 3    | 280    | 3,350 | 4,930       | 7.3   | 2.25        | 0.07      |  |
|                 | 01/24/95 | 21  | 9.4    | 3      | 360    | 230   | 2,520       | 8.0   | 0.30        | 0.11      |  |
|                 | 02/20/96 |     |        | 4      | 2,170  | 2,910 |             | 7.4   |             | 0.33      |  |
|                 | 07/14/96 | 177 | 29.1   | 3      | 1,270  | 2,450 | 2,900       | 7.1   |             | 0.65      |  |
| [               | 04/02/97 |     | 12.3   | < 3    | 170    | 1,660 | 2,050       | 7.2   | 0.77        | < 0.05    |  |
| ſ               | 07/22/97 |     | 24.8   | 375    | 6,540  | 2,960 | 389         | 7.5   |             | 0.04      |  |
| Duck Creek at   | 02/03/98 |     | 12.0   | < 3    | 2,020  | 2,290 | 290         | 7.5   | < 0.50      | 0.09      |  |
| Boulder Highway | 09/08/98 | 171 |        | < 3    | 5,720  | 1,520 |             |       |             |           |  |
| [ [             | 06/02/99 | 10  |        | < 3    | 50     | 1,100 |             |       |             |           |  |
| l í             | 09/22/99 |     |        | < 3    | 210    | 870   |             |       |             |           |  |
|                 | 02/16/00 |     |        | < 3    | 1,920  | 1,240 |             |       |             |           |  |
|                 | 08/30/00 | 108 |        | < 3    | 4,360  | 1,300 |             |       |             |           |  |
| L T             | 07/06/01 | 242 |        | < 3    | 8,420  | 1,610 |             |       |             |           |  |
| l f             | 02/12/03 | 489 |        | < 3    | 2,580  | 1,270 | 1,580       | 7.4   | 0.23        | 0.08      |  |
| l f             | 07/24/03 |     |        |        | 1,080  | 3,290 |             |       |             |           |  |
| ŀ               | 08/16/04 |     |        | 5      | 3,960  | 1,920 | 2,320       | 7.2   | 0.28        | 0.09      |  |
|                 | 09/09/04 |     |        | < 5    | 26,300 | 2,040 | 2,080       | 7.7   | 0.22        | 0.04      |  |
| [               | Median   | 41  | 18     | < 3    | 1,270  | 2,290 | 2,320       | 7.5   | 0.30        | 0.08      |  |
| l f             | Maximum  | 489 | 29     | 375    | 26,300 | 5,150 | 17,480      | 8.1   | 2.25        | 2.26      |  |
|                 | Minimum  | 10  | 9      | < 3    | 23     | 230   | 290         | 7.1   | < 0.10      | 0.04      |  |

| Location        | Data     | Total               | NO3-N  |      | NO-2 | NH3-N  | TKN    | Total            |                | Corner |                | issolved |
|-----------------|----------|---------------------|--------|------|------|--------|--------|------------------|----------------|--------|----------------|----------|
| Location        | Date     | Phosphorous<br>mg/L | mg/L   | mg/L |      | mg/L   | mg/L   | Nitrogen<br>mg/L | Copper<br>mg/L |        | Copper<br>mg/L |          |
|                 | 08/30/92 | 0.12                | 3.5    | -    |      | 0.06   | 2.6    | 4.5              | <              | 0.010  |                | ing 2    |
|                 | 10/24/92 | 0.16                | 3.8    |      |      | 0.42   | 3.7    | 7.5              | <              | 0.010  |                |          |
|                 | 02/08/93 | 0.06                | 4.6    |      |      | < 0.10 | < 1.0  | 5.6              | <              | 0.010  |                |          |
|                 | 08/04/93 | 0.13                | 4.1    |      |      | 0.68   | 3.1    | 7.2              | <              | 0.010  |                |          |
|                 | 02/04/94 | 1.30                | 4.5    |      |      | 0.69   | 4.3    | 8.8              |                | 0.044  |                |          |
|                 | 03/25/94 | 0.20                | < 2.0  |      |      | 0.40   | 3.4    | 5.4              |                | 0.016  |                |          |
|                 | 07/19/94 | 0.37                | 4.1    |      |      | 2.30   | 5.5    | 9.6              |                | 0.025  |                |          |
|                 | 01/24/95 |                     | 1.0    |      |      | 0.20   | 1.5    | 2.5              |                | 0.022  |                |          |
|                 | 02/20/96 | 1.00                | 3.6    |      |      | 1.00   | 8.1    | 9.1              |                | 0.062  |                |          |
|                 | 07/14/96 | 5.60                | 2.3    |      |      | 1.20   | 11.0   | 13.3             |                | 0.046  |                |          |
|                 | 04/02/97 | 0.38                | 3.2    |      |      | 1.00   | 5.2    | 8.4              |                | 0.016  |                |          |
|                 | 07/22/97 | 0.41                | < 1.0  |      |      | 0.60   | 6.8    | 7.8              |                | 0.140  |                |          |
| Duck Creek at   | 02/03/98 | 1.34                | 3.8    |      |      | 0.60   | 5.2    | 9.0              | <              | 0.010  |                |          |
| Boulder Highway | 09/08/98 | 1.20                | 2.2    |      |      | 0.44   | 13.0   | 2.3              |                | 0.240  |                | 0.02     |
| [               | 06/02/99 | 0.58                | 2.4    |      |      | 0.79   | 4.7    | 7.1              |                | 0.040  | <              | 0.01     |
|                 | 09/22/99 | 0.44                | 1.9    |      |      | 0.40   | 2.5    | 4.3              | <              | 0.010  | <              | 0.01     |
|                 | 02/16/00 | 2.29                | 3.0    |      |      | 0.89   | 6.9    | 9.9              |                | 0.150  | <              | 0.01     |
|                 | 08/30/00 | 3.60                | 1.8    |      |      | 0.26   | 4.9    | 6.7              |                | 0.240  | <              | 0.01     |
|                 | 07/06/01 | 7.50                | 2.0    |      |      | < 0.05 | 11.0   | 13.0             |                | 0.240  | <              | 0.01     |
|                 | 02/12/03 | 2.70                | 1.3    | <    | 0.5  |        | 9.7    | 11.0             |                | 0.094  | <              | 0.01     |
|                 | 07/24/03 |                     | 2.8    |      | 1.8  |        | 6.2    | 10.8             | <              | 0.200  | <              | 0.02     |
|                 | 08/16/04 | 1.70                | 3.6    |      | 2.6  |        | 11.0   | 17.2             |                | 0.280  |                | 0.53     |
|                 | 09/09/04 | 2.40                | 2.4    | <    | 0.4  |        | 8.9    | 11.3             |                | 0.094  | <              | 0.01     |
|                 | Median   | 1.00                | 2.80   |      | 1.15 | 0.60   | 5.20   | 8.40             |                | 0.04   | <              | 0.01     |
|                 | Maximum  | 7.50                | 4.60   |      | 2.60 | 2.30   | 13.00  | 17.20            |                | 0.28   |                | 0.53     |
|                 | Minimum  | 0.06                | < 1.00 | <    | 0.40 | < 0.05 | < 1.00 | 2.33             | <              | 0.01   | <              | 0.01     |

|                 | _        |          |         | Dissolved |          |          |       | Dissolved |         |
|-----------------|----------|----------|---------|-----------|----------|----------|-------|-----------|---------|
| Location        | Date     | Chromium | Lead    | Lead      | Mercury  | Cadmium  | Zinc  | Zinc      | Silver  |
|                 |          | mg/L     | mg/L    | mg/L      | mg/L     | mg/L     | mg/L  | mg/L      | mg/L    |
|                 | 08/30/92 | < 0.0100 | < 5.000 |           | < 0.0002 | < 0.0050 | 0.053 |           | < 0.010 |
|                 | 10/24/92 | < 0.0100 | < 0.010 |           | < 0.0002 | < 0.0050 | 0.038 |           | < 0.010 |
|                 | 02/08/93 | < 0.0100 | < 0.004 |           | < 0.0002 | < 0.0050 | 0.097 |           | < 0.010 |
|                 | 08/04/93 | < 0.0100 | < 0.004 |           | < 0.0002 | < 0.0050 | 0.035 |           | < 0.010 |
|                 | 02/04/94 | 0.0450   | 0.031   |           | 0.0002   | < 0.0050 | 0.200 |           | < 0.010 |
|                 | 03/25/94 | 0.0100   | 0.006   |           | < 0.0002 | < 0.0050 | 0.053 |           | < 0.010 |
|                 | 07/19/94 | 0.0100   | 0.007   |           | < 0.0002 | < 0.0050 | 0.073 |           | < 0.010 |
|                 | 01/24/95 | < 0.0100 | < 0.100 |           | 0.0002   | < 0.0050 | 0.110 |           | < 0.010 |
|                 | 02/20/96 |          |         |           |          |          | 0.160 |           |         |
|                 | 07/14/96 |          | < 0.100 |           |          |          | 0.210 |           |         |
|                 | 04/02/97 |          | < 0.100 |           |          |          | 0.083 |           |         |
|                 | 07/22/97 |          | < 0.100 |           |          |          | 0.190 |           |         |
| Duck Creek at   | 02/03/98 |          | 0.120   |           |          |          | 0.340 |           |         |
| Boulder Highway | 09/08/98 |          | 0.220   | < 0.100   |          |          | 0.730 | < 0.020   |         |
|                 | 06/02/99 |          | < 0.100 | < 0.100   |          |          | 0.130 | < 0.020   |         |
|                 | 09/22/99 |          | < 0.100 | < 0.100   |          |          | 0.079 | < 0.020   |         |
|                 | 02/16/00 |          | < 0.100 | < 0.100   |          |          | 0.500 | < 0.020   |         |
|                 | 08/30/00 |          | < 0.100 | < 0.100   |          |          | 0.910 | < 0.020   |         |
|                 | 07/06/01 |          | 0.150   | < 0.100   |          |          | 0.850 | 0.029     |         |
|                 | 02/12/03 | 0.0091   | 0.040   | < 0.100   | < 0.0002 | 0.0011   | 0.270 | < 0.020   | < 0.001 |
|                 | 07/24/03 |          | 0.019   | < 0.200   |          |          | 0.140 | < 0.040   |         |
|                 | 08/16/04 | 0.0450   | 0.046   | < 0.020   | < 0.0002 | 0.0030   | 0.530 | 0.025     | < 0.003 |
|                 | 09/09/04 | 0.0670   | 0.077   | 0.020     | < 0.0002 | 0.0016   | 0.480 | < 0.020   | 0.013   |
| [               | Median   | < 0.0100 | < 0.100 | < 0.1000  | < 0.0002 | < 0.0050 | 0.160 | < 0.020   | < 0.010 |
| [               | Maximum  | 0.0670   | < 5.000 | < 0.2000  | 0.0002   | < 0.0050 | 0.910 | 0.040     | 0.013   |
|                 | Minimum  | 0.0091   | < 0.004 | < 0.0200  | < 0.0002 | 0.0011   | 0.035 | < 0.020   | < 0.001 |

| Location        | Date     |   | Nickel |   | Selenium | Arsenic | Boron |   | Cyanide |   | BOD  | СС | DD  | Co | olor |
|-----------------|----------|---|--------|---|----------|---------|-------|---|---------|---|------|----|-----|----|------|
|                 |          |   | mg/L   |   | mg/L     | mg/L    | mg/L  |   | mg/L    |   | mg/L | mg | g/L | A  | CU   |
|                 | 08/30/92 | < | 0.04   |   |          | 0.060   | 2.70  |   | 0.013   |   | 19   | 9  | 9   |    | 100  |
|                 | 10/24/92 | < | 0.04   |   |          | 0.038   | 2.50  |   | 0.007   |   | 21   | 12 | 25  |    | 225  |
|                 | 02/08/93 | < | 0.04   | < | 0.025    | 0.042   | 2.30  | < | 0.005   | < | 6    | 3  | 0   |    | 25   |
| [               | 08/04/93 | < | 0.02   |   |          | 0.037   | 3.00  | < | 0.005   |   | 77   | 23 | 30  |    | 200  |
|                 | 02/04/94 |   | 0.03   | < | 0.020    | 0.100   | 1.50  | < | 0.005   |   | 28   | 17 | 75  |    | 225  |
|                 | 03/25/94 | < | 0.01   |   | 0.019    | 0.046   | 1.80  | < | 0.005   |   | 15   | 8  | 9   |    | 60   |
|                 | 07/19/94 |   | 0.01   | < | 0.010    | 0.034   | 1.60  |   | 0.011   |   | 67   | 44 | 15  |    | 60   |
|                 | 01/24/95 | < | 0.01   | < | 0.005    |         | 0.08  |   | 0.009   |   | 12   | 9  | 0   |    | 30   |
|                 | 02/20/96 |   |        |   |          |         | 1.20  |   | 0.030   |   | 50   | 24 | 15  |    | 30   |
|                 | 07/14/96 |   |        |   |          |         | 1.60  | < | 0.005   |   | 110  | 78 | 30  |    | 200  |
|                 | 04/02/97 |   |        |   |          |         | 0.79  |   | 0.006   |   | 40   | 28 | 30  |    | 150  |
|                 | 07/22/97 |   |        |   |          |         | 1.60  |   | 0.022   |   | 20   | 17 | 70  |    | 150  |
| Duck Creek at   | 02/03/98 |   |        |   |          |         | 1.20  | < | 0.005   |   | 48   | 19 | 90  |    | 75   |
| Boulder Highway | 09/08/98 |   |        |   |          |         | 0.72  |   |         |   |      |    |     |    |      |
|                 | 06/02/99 |   |        |   |          |         | 0.77  |   |         |   |      |    |     |    |      |
|                 | 09/22/99 |   |        |   |          |         | 0.46  |   |         |   |      |    |     |    |      |
|                 | 02/16/00 |   |        |   |          |         | 0.77  |   |         |   |      |    |     |    |      |
|                 | 08/30/00 |   |        |   |          |         | 0.56  |   |         |   |      |    |     |    |      |
|                 | 07/06/01 |   |        |   |          |         | 0.79  |   |         |   |      |    |     |    |      |
|                 | 02/12/03 |   | 0.03   | < | 0.050    | 0.089   | 0.33  |   |         |   |      |    |     |    |      |
| -               | 07/24/03 |   |        |   |          |         | 1.30  |   |         |   |      |    |     |    |      |
|                 | 08/16/04 |   | 0.05   | < | 0.025    | 0.063   | 0.70  |   |         |   |      |    |     |    |      |
|                 | 09/09/04 |   | 0.12   | < | 0.025    | 0.190   | 0.84  |   |         |   |      |    |     |    |      |
| [               | Median   | < | 0.03   | < | 0.023    | 0.053   | 1.20  | < | 0.006   |   | 28   | 17 | 75  |    | 100  |
|                 | Maximum  |   | 0.12   | < | 0.050    | 0.190   | 3.00  |   | 0.030   |   | 110  | 78 | 30  |    | 225  |
|                 | Minimum  | < | 0.01   | < | 0.005    | 0.034   | 0.08  | < | 0.005   | < | 6    | 3  | 0   |    | 25   |

|                        |          |           |        | Petroleum    | ТРН        | ТРН        | Total    | Fecal      | Fecal*     | Fecal**    |
|------------------------|----------|-----------|--------|--------------|------------|------------|----------|------------|------------|------------|
| Location               | Date     | Turbidity | Phenol | Hydrocarbons | (diesel)   | (gasoline) | Chlorine | Coliform   | Coliform   | Coliform   |
|                        |          | NTU       | mg/L   |              | MPN/100 mL | MPN/100 mL | mg/L     | MPN/100 mL | MPN/100 mL | MPN/100 mL |
|                        | 08/30/92 | 55        | 0.02   |              |            |            | < 0.10   | 50,000     |            |            |
|                        | 10/24/92 | 55        | 0.50   |              |            |            | < 0.10   | 50,000     |            |            |
|                        | 02/08/93 | 14        | 0.10   |              |            |            | < 0.10   | 400        | 800        |            |
|                        | 08/04/93 | 34        | 0.02   |              |            |            | < 0.10   | 1,700,000  | 1,400,000  | 1,300,000  |
|                        | 02/04/94 | 650       | 0.10   |              |            |            | < 0.10   | 1,100      | 2,300      | 220        |
|                        | 03/25/94 | 70        | < 0.01 |              |            |            | < 0.10   | 3,000      |            | 3,000      |
|                        | 07/19/94 | 45        |        |              |            |            | < 0.10   | 900,000    | 300,000    | 500,000    |
|                        | 01/24/95 | 120       | < 0.10 |              | < 1        | < 1        | < 0.01   |            |            | 5,000      |
|                        | 02/20/96 | 14        | < 0.01 | < 1          |            |            |          | 3,000      |            |            |
|                        | 07/14/96 | 3,800     | < 0.01 |              |            |            | < 0.01   | 5,000,000  |            |            |
|                        | 04/02/97 | 72        | < 0.01 | < 1          |            |            |          | 7,000      |            |            |
|                        | 07/22/97 | 2,300     | < 0.01 | < 1          |            |            | 0.40     | 22,000     |            |            |
| Duck Creek at          | 02/03/98 | 370       | < 0.01 | < 1          |            |            | < 0.10   | 1,100      |            |            |
| <b>Boulder Highway</b> | 09/08/98 |           |        |              |            |            |          | 17,000     |            |            |
|                        | 06/02/99 |           |        |              |            |            |          | 7,900      |            |            |
|                        | 09/22/99 |           |        |              |            |            |          | 160,000    |            |            |
|                        | 02/16/00 |           |        |              |            |            |          | 8,000      |            |            |
|                        | 08/30/00 |           |        |              |            |            |          | 110,000    |            |            |
|                        | 07/06/01 |           |        |              |            |            |          | 900,000    |            |            |
|                        | 02/12/03 |           |        |              |            |            |          | 30,000     |            |            |
|                        | 07/24/03 |           |        |              |            |            |          | 1,600,000  |            |            |
|                        | 08/16/04 |           |        |              |            |            |          | 900        |            |            |
|                        | 09/09/04 |           |        |              |            |            |          | 900,000    |            |            |
|                        | Median   | 70        | < 0.02 | < 1          | < 1        | < 1        | < 0.10   | 26,000     | 151,150    | 5,000      |
|                        | Maximum  | 3800      | 0.50   | < 1          | < 1        | < 1        | 0.40     | 5,000,000  | 1,400,000  | 1,300,000  |
|                        | Minimum  | 14        | < 0.01 | < 1          | < 1        | < 1        | < 0.01   | 400        | 800        | 220        |

|                 |          | Fecal      | Fecal*     | Fecal**    |            |              |              |              |              |
|-----------------|----------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|
| Location        | Date     | Strep.     | Strep.     | Strep.     | Salmonella | VOC          | Pesticides   | SOC          | Herbicides   |
|                 |          | MPN/100 mL | MPN/100 mL | MPN/100 mL | MPN/100 mL | # of detects | # of detects | # of detects | # of detects |
|                 | 08/30/92 | > 16       |            |            |            |              |              |              |              |
|                 | 10/24/92 | 30,000     |            |            |            |              |              |              |              |
|                 | 02/08/93 | 3,000      | 13,000     |            |            |              |              |              |              |
|                 | 08/04/93 | 160,000    | 160,000    | 3,000,000  |            |              |              |              |              |
|                 | 02/04/94 | 8,000      | 2,300      | 230        |            |              |              |              |              |
|                 | 03/25/94 | 13,000     |            | 30,000     | < 2.0      |              |              |              |              |
|                 | 07/19/94 | 240,000    | 240,000    | 240,000    | 2.0        |              |              |              |              |
|                 | 01/24/95 |            |            | 17,000     | < 2.0      |              |              |              |              |
|                 | 02/20/96 | 13,000     |            |            | 5.0        |              |              |              |              |
|                 | 07/14/96 | 500,000    |            |            | 2.2        |              | 0            |              | 0            |
|                 | 04/02/97 | 90,000     |            |            | 4.0        |              | 0            |              | 3            |
|                 | 07/22/97 | 17,000     |            |            | 9.2        |              | 0            |              | 1            |
| Duck Creek at   | 02/03/98 | 50,000     |            |            | < 2.2      |              | 0            |              | 1            |
| Boulder Highway | 09/08/98 | 24,000     |            |            | < 2.2      | 0            | 0            |              | 0            |
|                 | 06/02/99 | 130,000    |            |            |            | 1 a          | 0            |              | 0            |
|                 | 09/22/99 | 35,000     |            |            |            | 1 a          | 0            |              | 0            |
|                 | 02/16/00 | 80,000     |            |            |            | 1 a          | 0            |              | 0            |
|                 | 08/30/00 | 90,000     |            |            |            | 0            | 0            |              | 0            |
|                 | 07/06/01 | 300,000    |            |            |            | 2 a,b        | 0            |              | 2 f          |
|                 | 02/12/03 | 160,000    |            |            |            | 1 a          | 0            | 3 g,m,x      | 0            |
| [ [             | 07/24/03 | 80,000     |            |            |            | 1            | 0            | 7            | 0            |
|                 | 08/16/04 | 70,000     |            |            |            | 1 a          | 0            | 2 x,o        | 0 y,hh       |
|                 | 09/09/04 | > 160,000  |            |            |            | 1 a          | 0            | 2 o,g        | 1 uu         |
| [               | Median   | 75,000     | 86,500     | 30,000     | < 2.2      |              |              |              |              |
|                 | Maximum  | 500,000    | 240,000    | 3,000,000  | 9.2        |              |              |              |              |
|                 | Minimum  | 16         | 2,300      | 230        | < 2.0      |              |              |              |              |

| Location                   | Date     | Q   | Temp   | 6 | Oil &<br>Grease | TSS    | TDS   | Specific<br>Conductance | Lab<br>pH | Surfactants<br>(MBAS) | Ortho-<br>Phosphate | Total<br>Phosphorous |
|----------------------------|----------|-----|--------|---|-----------------|--------|-------|-------------------------|-----------|-----------------------|---------------------|----------------------|
|                            | 10/24/02 | cfs | Deg. C |   | mg/L            | mg/L   | mg/L  | umho/cm                 | units     | mg/L                  | mg/L                | mg/L                 |
|                            | 10/24/92 | 115 | 18.0   | < | 3.0             | 1,710  | 1,270 |                         | 7.4       | 1.51                  | 0.18                | 1.20                 |
|                            | 02/08/93 | 160 | 12.3   | < | 3.0             | 1,130  | 130   |                         | 8.2       | < 0.05                | 0.46                | 0.66                 |
|                            | 06/05/93 | 41  | 17.7   |   | 3.9             | 1,420  | 1,520 |                         | 7.5       | 1.84                  | 0.44                | 0.82                 |
|                            | 08/05/93 | 57  | 26.1   | < | 3.0             | 5,910  | 2,290 |                         | 7.6       | 1.18                  | 0.06                | 1.20                 |
|                            | 02/04/94 | 45  | 9.0    |   | 5.3             | 620    | 1,180 | 2,300                   | 7.4       | 0.69                  | 0.61                | 0.68                 |
|                            | 03/25/94 | 79  | 17.4   |   | 6.5             | 3,860  | 1,140 | 7,570                   | 7.4       | 0.78                  | 0.84                | 1.80                 |
|                            | 07/19/94 |     | 24.4   |   | 7.0             | 6,710  | 1,200 | 1,501                   | 7.4       | 3.49                  | 0.19                | 2.10                 |
|                            | 08/19/94 | 37  | 26.0   |   | 3.8             | 4,750  | 1,060 | 2,080                   | 7.7       | 0.05                  | < 0.05              | 1.00                 |
|                            | 01/24/95 | 125 | 9.3    |   | 4.5             | 1,960  | 600   | 389                     | 7.9       | 0.22                  | 0.08                |                      |
|                            | 05/24/95 | 30  | 18.3   | < | 3.0             | 255    | 1,160 | 1,302                   | 7.5       | 0.71                  | 0.06                | 0.32                 |
|                            | 08/12/95 | 335 | 26.4   |   | 7.2             | 1,050  | 1,010 | 1,003                   | 7.2       | 1.70                  | 0.14                | 1.50                 |
| Elemines Wesh              | 01/31/96 |     |        |   | 18.0            | 560    | 1,920 |                         | 7.0       | 1.99                  | 0.44                | 1.30                 |
| Flamingo Wash<br>at Nellis | 11/21/96 | 184 | 17.3   | < | 3.0             | 2,620  | 440   | 3,830                   | 7.8       | < 0.05                | 0.15                | 1.50                 |
| at mems                    | 09/25/97 |     | 19.7   | < | 3.0             | 324    | 580   | 710                     | 7.3       | 1.75                  | 0.57                | 0.66                 |
|                            | 02/04/98 |     | 11.2   |   | 5.2             | 1,800  | 680   | 240                     | 7.6       | 0.92                  | 0.22                | 2.94                 |
|                            | 02/24/98 |     | 12.0   | < | 3.0             | 660    | 380   |                         | 7.8       | < 0.50                | 0.08                | 0.88                 |
|                            | 02/12/03 | 538 |        | < | 3.0             | 1,900  | 260   | 415                     | 7.6       | 0.33                  | 0.15                | 1.05                 |
|                            | 04/14/03 | 411 |        |   |                 | 3,410  | 505   | 650                     | 7.4       | < 0.05                |                     |                      |
|                            | 07/24/03 | 120 |        |   |                 | 2,230  | 790   |                         |           |                       |                     |                      |
|                            | 08/16/03 | 366 |        |   |                 | 19,200 | 810   |                         |           |                       | 0.34                | 1.00                 |
|                            | 08/13/04 |     |        | < | 5.0             | 18,800 | 940   | 1,020                   | 7.2       | 0.06                  | 0.11                | 5.00                 |
|                            | 08/16/04 |     |        | < | 5.0             | 5,760  | 1,040 | 1,210                   | 7.3       | 0.59                  | 0.09                | 3.20                 |
|                            | Median   | 120 | 17.7   | < | 4               | 1,930  | 975   | 1,115                   | 7.5       | 0.70                  | 0.17                | 1.20                 |
|                            | Maximum  | 538 | 26.4   |   | 18              | 19,200 | 2,290 | 7,570                   | 8.2       | 3.49                  | 0.84                | 5.00                 |
|                            | Minimum  | 30  | 9.0    | < | 3               | 255    | 130   | 240                     | 7.0       | < 0.05                | < 0.05              | 0.32                 |

| Location                   | Date     | NO3-N<br>mg/L | NO-2<br>mg/L | NH3-N<br>mg/L | <b>TKN</b><br>mg/L | Total<br>Nitrogen<br>mg/L | Copper<br>mg/L | <b>Dissolved</b><br>Copper<br>mg/L | <b>Chromium</b><br>mg/L | <b>Lead</b><br>mg/L |
|----------------------------|----------|---------------|--------------|---------------|--------------------|---------------------------|----------------|------------------------------------|-------------------------|---------------------|
|                            | 10/24/92 | 2.30          | 0            | 1.40          | 7.6                | 9.9                       | 0.100          | 0                                  | 0.038                   | 0.079               |
|                            | 02/08/93 | 0.40          |              | 0.13          | < 1.0              | 1.4                       | 0.020          |                                    | 0.031                   | 0.019               |
|                            | 06/05/93 | 3.20          |              | 1.10          | 4.9                | 8.1                       | 0.059          |                                    | 0.031                   | 0.051               |
|                            | 08/05/93 | 4.30          |              | 1.90          | 6.6                | 10.9                      | 0.067          |                                    | 0.040                   | 0.086               |
|                            | 02/04/94 | 2.60          |              | 1.00          | 3.7                | 6.3                       | 0.046          |                                    | 0.011                   | 0.014               |
|                            | 03/25/94 | < 0.50        |              | 0.80          | 7.1                | 7.6                       | 0.094          |                                    | 0.048                   | 0.100               |
|                            | 07/19/94 | 3.00          |              | 2.50          | 6.1                | 9.1                       | 0.130          |                                    | 0.050                   | 0.130               |
|                            | 08/19/94 | 2.00          |              | 0.82          | 9.1                | 11.1                      | 0.094          |                                    | 0.043                   | 0.125               |
|                            | 01/24/95 | 1.30          |              | 0.30          | 2.6                | 3.9                       | 0.061          |                                    | 0.028                   | < 0.100             |
|                            | 05/24/95 | 2.10          |              | 0.40          | 3.1                | 5.2                       | 0.027          |                                    | < 0.010                 | 0.018               |
|                            | 08/12/95 | < 0.30        |              | 1.00          | 9.3                | 9.6                       | 0.069          |                                    | 0.017                   | 0.049               |
|                            | 01/31/96 | 5.10          |              | 2.50          | 13.0               | 18.1                      | 0.070          |                                    |                         | 0.130               |
| Flamingo Wash<br>at Nellis | 11/21/96 | 1.00          |              | 0.60          | 3.8                | 4.8                       | 0.057          |                                    |                         | < 0.100             |
| at wents                   | 09/25/97 | 0.50          |              | 0.30          | 2.7                | 3.2                       | 0.026          |                                    |                         | < 0.100             |
|                            | 02/04/98 | 1.70          |              | 0.80          | 19.0               | 20.7                      | 0.065          |                                    |                         | 0.120               |
|                            | 02/24/98 | 0.98          |              | 0.30          | 2.2                | 3.2                       | 0.020          |                                    |                         | < 0.100             |
|                            | 02/12/03 | 0.97          | < 0.10       |               | 3.2                | 4.2                       | 0.039          | < 0.010                            | 0.006                   | 0.030               |
|                            | 04/14/03 | 1.23          | 0.13         |               | 7.6                | 9.0                       | 0.100          | < 0.010                            | 34.000                  | 0.047               |
|                            | 07/24/03 | 1.80          | < 0.50       |               | 6.6                | 8.4                       | 0.170          | < 0.010                            |                         | 0.074               |
|                            | 08/16/03 | 2.00          | < 0.20       |               | 5.4                | 7.4                       | 0.320          | < 0.010                            |                         | 0.120               |
|                            | 08/13/04 | 2.20          | < 0.20       |               | 16.0               | 2.2                       | 0.270          | < 0.020                            | < 0.100                 | 0.410               |
|                            | 08/16/04 | 2.60          | 0.09         |               | 11.0               | 14.5                      | 0.220          | < 0.010                            | 0.066                   | 0.220               |
|                            | Median   | 1.90          | 0.17         | 0.81          | 6.4                | 7.9                       | 0.068          | < 0.010                            | 0.038                   | 0.100               |
|                            | Maximum  | 5.10          | 0.50         | 2.50          | 19.0               | 20.7                      | 0.320          | 0.020                              | 34.000                  | 0.410               |
|                            | Minimum  | < 0.30        | 0.09         | 0.13          | < 1.0              | 1.4                       | 0.020          | < 0.010                            | 0.006                   | 0.014               |

|               |          | D | issolved |   |         |   |         |   |      | D | vissolved |   |        |   |        |   |          |   |         |
|---------------|----------|---|----------|---|---------|---|---------|---|------|---|-----------|---|--------|---|--------|---|----------|---|---------|
| Location      | Date     |   | Lead     | I | Aercury | ( | Cadmium |   | Zinc |   | Zinc      |   | Silver |   | Nickel |   | Selenium |   | Arsenic |
|               |          |   | mg/L     |   | mg/L    |   | mg/L    |   | mg/L |   | mg/L      |   | mg/L   |   | mg/L   |   | mg/L     |   | mg/L    |
|               | 10/24/92 |   |          |   | 0.0002  | < | 0.0050  |   | 0.43 |   |           | < | 0.010  | < | 0.040  |   |          | < | 0.0250  |
|               | 02/08/93 |   |          | < | 0.2000  | < | 0.0050  |   | 0.18 |   |           | < | 0.010  | < | 0.040  | < | 0.025    |   | 0.0150  |
|               | 06/05/93 |   |          |   | 0.0002  | < | 0.0050  |   | 0.26 |   |           | < | 0.010  | < | 0.020  | < | 0.015    |   | 0.0160  |
|               | 08/05/93 |   |          | < | 0.0002  | < | 0.0050  |   | 0.27 |   |           | < | 0.010  |   | 0.030  |   |          |   | 0.0270  |
|               | 02/04/94 |   |          | < | 0.0002  | < | 0.0050  |   | 0.09 |   |           | < | 0.010  | < | 0.020  | < | 0.010    |   | 0.0080  |
|               | 03/25/94 |   |          |   | 0.0004  | < | 0.0050  |   | 0.37 |   |           | < | 0.010  |   | 0.032  | < | 0.015    |   | 0.0310  |
|               | 07/19/94 |   |          |   | 0.0004  | < | 0.0050  |   | 0.55 |   |           | < | 0.010  |   | 0.054  | < | 0.010    |   | 0.0320  |
|               | 08/19/94 |   |          |   | 0.0002  | < | 0.0050  |   | 0.44 |   |           | < | 0.010  |   | 0.026  | < | 0.005    |   | 0.0310  |
|               | 01/24/95 |   |          | < | 0.0002  | < | 0.0050  |   | 0.26 |   |           | < | 0.010  |   | 0.016  | < | 0.005    |   |         |
|               | 05/24/95 |   |          | < | 0.0002  | < | 0.0050  |   | 0.09 |   |           | < | 0.010  |   | 0.011  |   | 0.007    | < | 0.0050  |
|               | 08/12/95 |   |          | < | 0.0002  | < | 0.0050  |   | 0.37 |   |           | < | 0.010  |   | 0.027  | < | 0.005    |   | 0.0090  |
| Flamingo Wash | 01/31/96 |   |          |   |         |   |         |   | 0.86 |   |           |   |        |   |        |   |          |   |         |
| at Nellis     | 11/21/96 |   |          |   |         |   |         |   | 0.28 |   |           |   |        |   |        |   |          |   |         |
| at ivenis     | 09/25/97 |   |          |   |         |   |         |   | 0.13 |   |           |   |        |   |        |   |          |   |         |
|               | 02/04/98 |   |          |   |         |   |         |   | 0.36 |   |           |   |        |   |        |   |          |   |         |
|               | 02/24/98 |   |          |   |         |   |         |   | 0.15 |   |           |   |        |   |        |   |          |   |         |
|               | 02/12/03 | < | 0.100    | < | 0.0002  |   | 0.0007  |   | 0.17 |   | 0.100     | < | 0.050  |   | 0.015  | < | 0.050    |   | 0.0120  |
|               | 04/14/03 | < | 0.100    | < | 0.0002  | < | 0.0025  |   | 0.45 | < | 0.020     |   | 0.006  |   | 0.038  | < | 0.040    |   | 0.0140  |
|               | 07/24/03 | < | 0.100    |   |         |   |         |   | 1.10 |   | 0.023     |   |        |   |        |   |          |   |         |
|               | 08/16/03 | < | 0.100    |   |         |   |         |   | 1.50 | < | 0.020     |   |        |   |        |   |          |   |         |
|               | 08/13/04 | < | 0.020    |   | 0.0003  | < | 0.0500  | < | 0.01 |   | 1.900     | < | 0.005  |   | 0.500  | < | 0.025    | < | 0.0120  |
|               | 08/16/04 | < | 0.020    |   | 0.0026  |   | 0.0030  |   | 1.10 |   | 0.026     | < | 0.003  |   | 0.062  | < | 0.025    |   | 0.0270  |
|               | Median   | < | 0.100    | < | 0.0002  | < | 0.0050  |   | 0.32 |   | 0.025     | < | 0.010  |   | 0.030  | < | 0.015    | Ī | 0.016   |
|               | Maximum  | < | 0.100    |   | 0.2000  | < | 0.0500  |   | 1.50 |   | 1.900     |   | 0.050  |   | 0.500  | < | 0.050    |   | 0.032   |
|               | Minimum  | < | 0.020    | < | 0.0002  |   | 0.0007  | < | 0.01 | < | 0.020     | < | 0.003  |   | 0.011  | < | 0.005    | < | 0.005   |

| Location                   | Date     | <b>Boron</b><br>mg/L | <b>Cyanide</b><br>mg/L | BOD<br>mg/L | COD<br>mg/L | <b>Color</b><br>ACU | <b>Turbidity</b><br>NTU | <b>Phenol</b><br>mg/L | Petroleum<br>Hydrocarbons | <b>TPH</b><br>( <b>diesel</b> )<br>MPN/100 mL |
|----------------------------|----------|----------------------|------------------------|-------------|-------------|---------------------|-------------------------|-----------------------|---------------------------|-----------------------------------------------|
|                            | 10/24/92 | 0.49                 | 0.008                  | 54          | 555         | 175                 | 750.0                   | 0.020                 |                           |                                               |
|                            | 02/08/93 | 0.09                 | < 0.005                | < 6         | 57          | 15                  | 700.0                   | 0.100                 |                           |                                               |
|                            | 06/05/93 | 0.58                 | < 0.005                | 56          | 375         | 320                 | 390.0                   | < 0.010               |                           |                                               |
|                            | 08/05/93 | 0.97                 | 0.008                  | 85          | 415         | 320                 | 200.0                   | 0.020                 |                           |                                               |
|                            | 02/04/94 | 0.41                 | < 0.005                | 37          | 185         | 100                 | 190.0                   | 0.100                 |                           |                                               |
|                            | 03/25/94 | 0.37                 | 0.008                  | 55          | 395         | 1,000               | 1,400.0                 | 0.010                 |                           |                                               |
|                            | 07/19/94 | 0.44                 | 0.013                  | 22          | 630         | 150                 | 0.2                     | 0.130                 |                           |                                               |
|                            | 08/19/94 | 0.35                 | < 0.005                | 40          | 465         | 150                 | 950.0                   | < 0.100               |                           |                                               |
|                            | 01/24/95 | 0.18                 | < 0.005                | 33          | 155         | 25                  | 510.0                   | 0.100                 |                           | < 1                                           |
|                            | 05/24/95 | 0.50                 | 0.007                  | 19          | 115         | 35                  | 180.0                   | 0.010                 | < 1.00                    |                                               |
|                            | 08/12/95 | 0.34                 | < 0.005                | 78          | 450         | 250                 | 8.0                     | < 0.100               |                           | < 1                                           |
| Floring Work               | 01/31/96 | 0.71                 | 0.030                  | 116         | 660         | 230                 | 520.0                   | 0.020                 | < 1.00                    |                                               |
| Flamingo Wash<br>at Nellis | 11/21/96 | 0.12                 | < 0.005                | 18          | 220         | 30                  | 3,300.0                 | < 0.010               | < 1.00                    |                                               |
| at mems                    | 09/25/97 | 0.30                 | < 0.005                | 42          | 160         | 60                  | 280.0                   | < 0.010               | 1.50                      |                                               |
|                            | 02/04/98 | 0.22                 | < 0.005                | 63          | 570         | 75                  | 2,200.0                 | < 0.010               | < 1.00                    |                                               |
|                            | 02/24/98 | 0.13                 | < 0.005                | 13          | 98          | 15                  | 740.0                   | < 0.010               | < 1.00                    |                                               |
|                            | 02/12/03 | < 0.05               |                        |             |             |                     |                         |                       |                           |                                               |
|                            | 04/14/03 | 0.18                 |                        |             |             |                     |                         |                       |                           |                                               |
|                            | 07/24/03 | 0.24                 |                        |             |             |                     |                         |                       |                           |                                               |
|                            | 08/16/03 | 0.27                 |                        |             |             |                     |                         |                       |                           |                                               |
|                            | 08/13/04 | 0.56                 |                        |             |             |                     |                         |                       |                           |                                               |
|                            | 08/16/04 | 0.28                 |                        |             |             |                     |                         |                       |                           |                                               |
|                            | Median   | 0.32                 | < 0.005                | 41          | 385         | 125                 | 515                     | 0.020                 | < 1.00                    | < 1                                           |
|                            | Maximum  | 0.97                 | 0.030                  | 116         | 660         | 1,000               | 3,300                   | 0.130                 | 1.50                      | < 1                                           |
|                            | Minimum  | < 0.05               | < 0.005                | < 6         | 57          | 15                  | 0.2                     | < 0.010               | < 1.00                    | < 1                                           |

| Location                   | Date     | <b>TPH</b><br>(gasoline)<br>MPN/100 mL | <b>Total</b><br>Chlorine<br>mg/L | Fecal<br>Coliform<br>MPN/100 mL | Fecal*<br>Coliform<br>MPN/100 mL | Fecal**<br>Coliform<br>MPN/100 mL | Fecal<br>Strep.<br>MPN/100 mL | Fecal*<br>Strep.<br>MPN/100 mL | Fecal**<br>Strep.<br>MPN/100 mL | <b>Salmonella</b><br>MPN/100 mL |
|----------------------------|----------|----------------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|
|                            | 10/24/92 |                                        | < 0.10                           | 80,000                          |                                  |                                   | 80,000                        |                                |                                 |                                 |
|                            | 02/08/93 |                                        | < 0.10                           | 1,700                           | 3,000                            |                                   | 90,000                        | 30,000                         |                                 |                                 |
|                            | 06/05/93 |                                        | < 0.10                           | 8,000                           | 28,000                           | 5,000                             | 50,000                        | 160,000                        | 90,000                          |                                 |
|                            | 08/05/93 |                                        | < 0.10                           | 300,000                         | 500,000                          | 50,000                            | 90,000                        | 160,000                        | 90,000                          |                                 |
|                            | 02/04/94 |                                        | < 0.10                           | 1,300                           | 500                              | 2,300                             | 22,000                        | 1,300                          | 500                             |                                 |
|                            | 03/25/94 |                                        | < 0.10                           | 24,000                          | 30,000                           | 30,000                            | 160,000                       | 160,000                        | 90,000                          | < 2                             |
|                            | 07/19/94 |                                        | < 0.10                           |                                 | 1,600,000                        | 500,000                           |                               | 500,000                        | 170,000                         | 13                              |
|                            | 08/19/94 |                                        | < 0.10                           | 170,000                         | 80,000                           | 140,000                           | 300,000                       | 130,000                        | 130,000                         | 8                               |
|                            | 01/24/95 | < 1                                    | < 0.01                           |                                 |                                  | 3,000                             |                               |                                | 22,000                          | 8                               |
|                            | 05/24/95 |                                        | < 0.01                           |                                 |                                  | 160,000                           |                               |                                | 90,000                          | 2                               |
|                            | 08/12/95 | < 1                                    | < 0.01                           |                                 |                                  | > 160,000                         |                               |                                | > 1,600                         | 2                               |
|                            | 01/31/96 |                                        |                                  | 13,000                          |                                  |                                   | 3,000                         |                                |                                 | < 2                             |
| Flamingo Wash<br>at Nellis | 11/21/96 |                                        | < 0.01                           | 240                             |                                  |                                   | 738                           |                                |                                 | < 2                             |
| at mems                    | 09/25/97 |                                        |                                  | 90,000                          |                                  |                                   | 160,000                       |                                |                                 | < 2                             |
|                            | 02/04/98 |                                        | 0.10                             | 5,000                           |                                  |                                   | 50,000                        |                                |                                 | < 2                             |
|                            | 02/24/98 |                                        | 0.20                             | 13,000                          |                                  |                                   | 17,000                        |                                |                                 | < 2                             |
|                            | 02/12/03 |                                        |                                  | 7,000                           |                                  |                                   | 17,000                        |                                |                                 |                                 |
|                            | 04/14/03 |                                        |                                  | 130,000                         |                                  |                                   | 70,000                        |                                |                                 |                                 |
|                            | 07/24/03 |                                        |                                  | 1,600,000                       |                                  |                                   | 170,000                       |                                |                                 |                                 |
|                            | 08/16/03 |                                        |                                  | 300,000                         |                                  |                                   | 10,000                        |                                |                                 | 0                               |
|                            | 08/13/04 |                                        |                                  | > 1,600,000                     |                                  |                                   | 170,000                       |                                |                                 |                                 |
|                            | 08/16/04 |                                        |                                  | > 1,600,000                     |                                  |                                   | 900,000                       |                                |                                 |                                 |
|                            | Median   | < 1                                    | < 0.10                           | 52,000                          | 30,000                           | 50,000                            | 75,000                        | 160,000                        | 90,000                          | < 2                             |
|                            | Maximum  | < 1                                    | 0.20                             | 1,600,000                       | 1,600,000                        | 500,000                           | 900,000                       | 500,000                        | 170,000                         | 13                              |
|                            | Minimum  | < 1                                    | < 0.01                           | 240                             | 500                              | 2300                              | 738                           | 1,300                          | 500                             | 0                               |

| Location                   | Date     | <b>VOC</b><br># of detects | <b>Pesticides</b><br># of detects | SOC<br># of detects | Herbicides<br># of detects |
|----------------------------|----------|----------------------------|-----------------------------------|---------------------|----------------------------|
|                            | 10/24/92 |                            |                                   |                     |                            |
|                            | 02/08/93 |                            |                                   |                     |                            |
|                            | 06/05/93 |                            |                                   |                     |                            |
|                            | 08/05/93 |                            |                                   |                     |                            |
|                            | 02/04/94 |                            |                                   |                     |                            |
|                            | 03/25/94 |                            |                                   |                     |                            |
|                            | 07/19/94 |                            |                                   |                     |                            |
|                            | 08/19/94 |                            |                                   |                     |                            |
|                            | 01/24/95 |                            |                                   |                     |                            |
|                            | 05/24/95 |                            |                                   |                     |                            |
|                            | 08/12/95 |                            |                                   |                     |                            |
|                            | 01/31/96 |                            | 0                                 |                     | 0                          |
| Flamingo Wash<br>at Nellis | 11/21/96 |                            | 0                                 |                     | 0                          |
| at mems                    | 09/25/97 |                            | 0                                 |                     | 0                          |
|                            | 02/04/98 |                            | 2                                 |                     | 1                          |
|                            | 02/24/98 |                            | 1                                 |                     | 1                          |
|                            | 02/12/03 | 1 a                        | 0                                 | 9 g,h,j,o,q,s,t,u,x | 0                          |
|                            | 04/14/03 | 1 d                        |                                   | 8 g,h,k,o,x,z,aa,bb | 0                          |
|                            | 07/24/03 | 2                          | 0                                 | 3                   | 0                          |
|                            | 08/16/03 | 1                          | 0                                 | 0                   | 0                          |
|                            | 08/13/04 | 2 k,l                      | 0                                 | 2 x,o               | 0                          |
|                            | 08/16/04 | 1 a                        | 0                                 | 3 x,o,g             | 2 y,uu                     |
|                            | Median   |                            |                                   |                     |                            |
|                            | Maximum  |                            |                                   |                     |                            |
|                            | Minimum  |                            |                                   |                     |                            |

| Location                       | Date     | Q<br>cfs | <b>Temp</b><br>Deg. C | Oil &<br>Grease<br>mg/L | TSS<br>mg/L | <b>TDS</b><br>mg/L | Specific<br>Conductance<br>umho/cm | Lab<br>pH<br>units | Surfactants<br>(MBAS)<br>mg/L | Ortho-<br>Phosphate<br>mg/L | <b>Total</b><br><b>Phosphorous</b><br>mg/L |
|--------------------------------|----------|----------|-----------------------|-------------------------|-------------|--------------------|------------------------------------|--------------------|-------------------------------|-----------------------------|--------------------------------------------|
|                                | 08/30/92 | 500      | 24.5                  | < 3                     | 17,800      | 230                |                                    | 8.0                | 0.26                          | < 0.05                      | 2.20                                       |
|                                | 02/08/93 | 181      | 11.1                  | < 3                     | 3,670       | 140                |                                    | 8.3                | < 0.05                        | 1.50                        | 3.90                                       |
|                                | 07/19/94 |          | 24.1                  | 3                       | 77          | 290                | 486                                | 7.5                | 1.81                          | 0.41                        | 0.42                                       |
|                                | 09/19/94 |          | 22.7                  | 3                       | 120         | 930                | 888                                | 7.6                | 2.60                          | 1.20                        | 2.70                                       |
|                                | 01/24/95 | 5        | 9.5                   | < 3                     | 1,190       | 210                | 274                                | 8.2                | 0.14                          | 0.41                        |                                            |
|                                | 11/21/96 | 30       | 17.0                  | < 3                     | 1,980       | 150                | 575                                | 8.2                | < 0.05                        | 0.52                        | 1.90                                       |
|                                | 08/10/97 |          | 17.5                  | < 3                     | 4,800       | 260                |                                    | 8.5                | 0.60                          | 0.37                        | 1.48                                       |
| C 1 Channel at                 | 02/24/98 |          | 12.0                  | < 3                     | 1,460       | 88                 |                                    | 8.4                | < 0.50                        | 0.61                        | 6.04                                       |
| C-1 Channel at<br>Warm Springs | 02/16/00 |          |                       | < 3                     | 610         | 62                 |                                    |                    |                               |                             | 2.15                                       |
| warm springs                   | 08/16/00 | 76       |                       | 5                       | 1,170       | 380                |                                    |                    |                               |                             | 1.50                                       |
|                                | 02/25/03 | 9        |                       | < 3                     | 187         | 100                | 139                                | 7.7                | 0.19                          |                             |                                            |
|                                | 09/04/03 | 29       |                       |                         | 3,850       | 440                |                                    |                    |                               |                             | 6.80                                       |
|                                | 11/12/03 | 156      |                       |                         | 110         | 150                |                                    |                    |                               | 0.26                        | 0.38                                       |
|                                | 11/07/04 |          |                       | < 5                     | 810         | 80                 | 93                                 | 8.4                | 0.05                          | 1.40                        | 1.50                                       |
|                                | Median   | 53       | 17.3                  | < 3                     | 1,180       | 180                | 380                                | 8.2                | 0.22                          | 0.47                        | 2.03                                       |
|                                | Maximum  | 500      | 25                    | 5                       | 17,800      | 930                | 888                                | 9                  | 3                             | 2                           | 7                                          |
|                                | Minimum  | 5        | 9.5                   | < 3                     | 77          | 62                 | 93                                 | 7.5                | < 0.05                        | < 0.05                      | 0.38                                       |

| Location       | Date     | NO3-N<br>mg/L |   | NO-2<br>mg/L | NH3-N<br>mg/L | <b>TKN</b><br>mg/L | <b>Total</b><br>Nitrogen<br>mg/L | <b>Copper</b><br>mg/L | <b>Dissolved</b><br><b>Copper</b><br>mg/L | <b>Chromium</b><br>mg/L |   | <b>Lead</b><br>mg/L |
|----------------|----------|---------------|---|--------------|---------------|--------------------|----------------------------------|-----------------------|-------------------------------------------|-------------------------|---|---------------------|
|                | 08/30/92 | 1.60          |   |              | 0.07          | 8.3                | 9.9                              | 0.27                  |                                           | 0.1900                  |   | 0.2200              |
|                | 02/08/93 | 0.30          |   |              | 0.11          | < 1.0              | 1.3                              | 0.09                  |                                           | 0.0630                  |   | 0.0600              |
|                | 07/19/94 | 0.80          |   |              | 0.97          | 2.8                | 3.6                              | 0.02                  |                                           | < 0.0100                |   | 0.0100              |
|                | 09/19/94 | 5.20          |   |              | 1.60          | 4.1                | 9.3                              | 0.03                  |                                           | 0.0140                  |   | 0.0220              |
|                | 01/24/95 | 0.80          |   |              | 0.06          | < 1.0              | 1.8                              | 0.04                  |                                           | 0.0190                  | < | 0.1000              |
|                | 11/21/96 | 0.80          |   |              | 0.30          | 2.1                | 2.9                              | 0.03                  |                                           |                         | < | 0.1000              |
|                | 08/10/97 | 2.00          |   |              | 0.20          | 5.2                | 7.2                              | 0.03                  |                                           |                         | < | 0.1000              |
| C-1 Channel at | 02/24/98 | 0.59          |   |              | 0.20          | 1.7                | 2.3                              | < 0.01                |                                           |                         | < | 0.1000              |
| Warm Springs   | 02/16/00 | 0.49          |   |              | 0.36          | 1.9                | 2.4                              | 0.07                  | < 0.010                                   |                         | < | 0.1000              |
| warm springs   | 08/16/00 | 4.12          |   |              | 1.13          | 6.1                | 10.2                             | 0.15                  | 0.034                                     |                         | < | 0.1000              |
|                | 02/25/03 | 0.44          | < | 0.10         |               | 0.9                | 1.4                              | 0.03                  | < 0.010                                   | 0.0089                  |   | 0.0055              |
|                | 09/04/03 | 1.70          | < | 0.10         |               | 10.0               | 11.5                             | < 0.20                | < 0.010                                   |                         |   | 0.0900              |
|                | 11/12/03 | 0.61          | < | 0.10         |               | 2.4                | 3.0                              | 0.02                  | 0.038                                     |                         |   | 0.0045              |
|                | 11/07/04 | 0.20          | < | 0.10         |               | 1.4                | 1.6                              | 0.04                  | < 0.010                                   | 0.0160                  |   | 0.0170              |
|                | Median   | 0.80          | < | 0.10         | 0.25          | 2.3                | 3.0                              | 0.03                  | < 0.010                                   | 0.0160                  | < | 0.1000              |
|                | Maximum  | 5             | < | 0.10         | 2             | 10                 | 12                               | 0.27                  | 0.038                                     | 0.1900                  |   | 0.2200              |
|                | Minimum  | 0.20          | < | 0.10         | 0.06          | 0.9                | 1.3                              | 0.01                  | < 0.010                                   | 0.0089                  |   | 0.0045              |

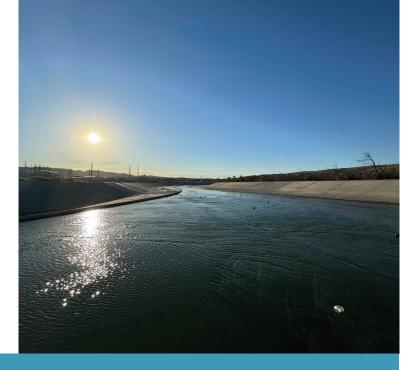
| Location       | Date     | <b>Dissolved</b><br>Lead<br>mg/L | <b>Mercury</b><br>mg/L | <b>Cadmium</b><br>mg/L | <b>Zinc</b><br>mg/L | Dissolved<br>Zinc<br>mg/L | <b>Silver</b><br>mg/L | <b>Nickel</b><br>mg/L | <b>Selenium</b><br>mg/L | Arsenic<br>mg/L |
|----------------|----------|----------------------------------|------------------------|------------------------|---------------------|---------------------------|-----------------------|-----------------------|-------------------------|-----------------|
|                | 08/30/92 |                                  | 0.0014                 | < 0.0050               | 0.89                |                           | < 0.0100              | 0.210                 |                         | 0.120           |
|                | 02/08/93 |                                  | < 0.0002               | < 0.0050               | 0.37                |                           | < 0.0100              | 0.077                 | < 0.0250                | 0.021           |
|                | 07/19/94 |                                  | < 0.0002               | < 0.0050               | 0.08                |                           | < 0.0100              | 0.017                 | < 0.0050                | < 0.005         |
|                | 09/19/94 |                                  | < 0.0002               | < 0.0050               | 0.20                |                           | < 0.0100              | 0.022                 | < 0.0050                | 0.008           |
|                | 01/24/95 |                                  | 0.0002                 | < 0.0050               | 0.18                |                           | < 0.0100              | 0.068                 | < 0.0050                |                 |
|                | 11/21/96 |                                  |                        |                        | 0.23                |                           |                       |                       |                         |                 |
|                | 08/10/97 |                                  |                        |                        | 0.20                |                           |                       |                       |                         |                 |
|                | 02/24/98 |                                  |                        |                        | 0.17                |                           |                       |                       |                         |                 |
| C-1 Channel at | 02/16/00 | < 0.10                           |                        |                        | 0.32                | < 0.20                    |                       |                       |                         |                 |
| Warm Springs   | 08/16/00 | < 0.10                           |                        |                        | 0.49                | < 0.02                    |                       |                       |                         |                 |
|                | 02/25/03 | < 0.10                           | < 0.0002               | < 0.0005               | 0.08                | 0.10                      | < 0.0005              | 0.007                 | < 0.0050                | 0.003           |
|                | 09/04/03 | < 0.10                           |                        |                        | 0.45                | < 0.02                    |                       |                       |                         |                 |
|                | 11/12/03 | < 0.02                           |                        |                        | 0.08                | 0.08                      |                       |                       |                         |                 |
|                | 11/07/04 | < 0.02                           | < 0.0002               | < 0.0005               | 0.15                | < 0.02                    | < 0.0005              | 0.020                 | < 0.0100                | 0.006           |
|                | Median   | < 0.10                           | < 0.0002               | < 0.0050               | 0.20                | < 0.05                    | < 0.0100              | 0.022                 | < 0.005                 | 0.007           |
|                | Maximum  | < 0.10                           | 0.0014                 | < 0.0050               | 0.89                | < 0.20                    | < 0.0100              | 0.210                 | < 0.025                 | 0.120           |
|                | Minimum  | < 0.02                           | < 0.0002               | < 0.0005               | 0.08                | < 0.02                    | < 0.0005              | 0.007                 | < 0.005                 | 0.003           |

| Location       | Date     | <b>Boron</b><br>mg/L | <b>Cyanide</b><br>mg/L | BOD<br>mg/L | COD<br>mg/L | <b>Color</b><br>ACU | <b>Turbidity</b><br>NTU | <b>Phenol</b><br>mg/L | Petroleum<br>Hydrocarbons | <b>TPH</b><br>( <b>diesel</b> )<br>MPN/100 mL |
|----------------|----------|----------------------|------------------------|-------------|-------------|---------------------|-------------------------|-----------------------|---------------------------|-----------------------------------------------|
|                | 08/30/92 | 0.27                 | 0.015                  | 13          | 88          | 30                  | 8,500                   | 0.02                  |                           |                                               |
|                | 02/08/93 | 0.09                 | < 0.005                | < 6         | 81          | 30                  | 1,900                   | 0.10                  |                           |                                               |
|                | 07/19/94 | 0.10                 | 0.006                  | 27          | 190         | 200                 | 26                      | 0.08                  |                           |                                               |
|                | 09/19/94 | 0.23                 | 0.009                  | 105         | 560         | 400                 | 18                      | 0.02                  |                           |                                               |
|                | 01/24/95 | 0.06                 | 0.007                  | 7           | 60          | 25                  | 380                     | 0.10                  |                           | < 1                                           |
|                | 11/21/96 | 0.07                 | < 0.005                | < 6         | 58          | 32                  | 840                     | < 0.01                | < 1                       |                                               |
|                | 08/10/97 | 0.15                 | < 0.005                | 8           | 230         | < 3                 | 4,400                   | < 0.01                |                           |                                               |
| C-1 Channel at | 02/24/98 | 0.09                 | < 0.005                | 13          | 120         | 20                  | 850                     | < 0.01                | < 1                       |                                               |
| Warm Springs   | 02/16/00 |                      |                        |             |             |                     |                         |                       |                           |                                               |
| warm springs   | 08/16/00 | 0.12                 |                        |             |             |                     |                         |                       |                           |                                               |
|                | 02/25/03 | < 0.05               |                        |             |             |                     |                         |                       |                           |                                               |
|                | 09/04/03 | 0.11                 |                        |             |             |                     |                         |                       |                           |                                               |
|                | 11/12/03 | < 0.05               |                        |             |             |                     |                         |                       |                           |                                               |
|                | 11/07/04 | < 0.05               |                        |             |             |                     |                         |                       |                           |                                               |
|                | Median   | 0.09                 | 0.006                  | 11          | 104         | 30                  | 845                     | 0.02                  | < 1                       | < 1                                           |
|                | Maximum  | 0.27                 | 0.015                  | 105         | 560         | 400                 | 8,500                   | 0.10                  | < 1                       | < 1                                           |
|                | Minimum  | < 0.05               | < 0.005                | < 6         | 58          | 3                   | 18                      | < 0.01                | < 1                       | < 1                                           |

| Location       | Date     | <b>TPH</b><br>(gasoline)<br>MPN/100 mL | <b>Total</b><br>Chlorine<br>mg/L | Fecal<br>Coliform<br>MPN/100 mL | Fecal*<br>Coliform<br>MPN/100 mL | Fecal**<br>Coliform<br>MPN/100 mL | Fecal<br>Strep.<br>MPN/100 mL | Fecal*<br>Strep.<br>MPN/100 mL | Fecal**<br>Strep.<br>MPN/100 mL | Salmonella<br>MPN/100 mL |
|----------------|----------|----------------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------|--------------------------|
|                | 08/30/92 |                                        | < 0.100                          | 90,000                          |                                  |                                   | > 16                          |                                |                                 |                          |
|                | 02/08/93 |                                        | < 0.100                          | 3,000                           |                                  |                                   | 30,000                        |                                |                                 |                          |
|                | 07/19/94 |                                        | < 0.100                          |                                 | 11,000                           | 30,000                            |                               | 80,000                         | 300,000                         | 4.0                      |
|                | 09/19/94 |                                        | < 0.010                          |                                 |                                  | 30,000                            |                               |                                | 90,000                          | 8.0                      |
|                | 01/24/95 | < 1                                    | < 0.010                          |                                 |                                  | 1,700                             |                               |                                | 13,000                          | < 2.0                    |
|                | 11/21/96 |                                        | < 0.010                          | 240                             |                                  |                                   | 1,230                         |                                |                                 | < 2.2                    |
|                | 08/10/97 |                                        | < 0.100                          | 3,000                           |                                  |                                   | 50,000                        |                                |                                 | 9.2                      |
| C 1 Channel at | 02/24/98 |                                        | 0.100                            | 5,000                           |                                  |                                   | 24,000                        |                                |                                 | < 2.2                    |
| C-1 Channel at | 02/16/00 |                                        |                                  | 13,000                          |                                  |                                   | 30,000                        |                                |                                 |                          |
| Warm Springs   | 08/16/00 |                                        |                                  | 30,000                          |                                  |                                   | 90,000                        |                                |                                 |                          |
|                | 02/25/03 |                                        |                                  | 8,000                           |                                  |                                   | 2,400                         |                                |                                 |                          |
|                | 09/04/03 |                                        |                                  | 17,000                          |                                  |                                   | 30,000                        |                                |                                 |                          |
|                | 11/12/03 |                                        |                                  | 24,000                          |                                  |                                   | 16,000                        |                                |                                 |                          |
|                | 11/07/04 |                                        |                                  | 5,000                           |                                  |                                   | 17,000                        |                                |                                 |                          |
|                | Median   | < 1                                    | < 0.100                          | 8,000                           | 11,000                           | 30,000                            | 24,000                        | 80,000                         | 90,000                          | 3.1                      |
|                | Maximum  | < 1                                    | 0.100                            | 90,000                          | 11,000                           | 30,000                            | 90,000                        | 80,000                         | 300,000                         | 9.2                      |
|                | Minimum  | < 1                                    | < 0.010                          | 240                             | 11,000                           | 1,700                             | > 16                          | 80,000                         | 13,000                          | < 2.0                    |

| Location       | Date     | <b>VOC</b><br># of detects | <b>Pesticides</b><br># of detects | SOC<br># of detects | Herbicides<br># of detects |
|----------------|----------|----------------------------|-----------------------------------|---------------------|----------------------------|
|                | 08/30/92 |                            |                                   |                     |                            |
|                | 02/08/93 |                            |                                   |                     |                            |
|                | 07/19/94 |                            |                                   |                     |                            |
|                | 09/19/94 |                            |                                   |                     |                            |
|                | 01/24/95 |                            |                                   |                     |                            |
|                | 11/21/96 |                            | 0                                 |                     | 1 hh                       |
|                | 08/10/97 |                            | 0                                 |                     | 1                          |
| C-1 Channel at | 02/24/98 |                            | 0                                 |                     | 2                          |
| Warm Springs   | 02/16/00 | 1 d                        | 0                                 |                     | 0                          |
| warm springs   | 08/16/00 | 1 a                        | 1 ww                              |                     | 1 hh                       |
|                | 02/25/03 | 0                          | 0                                 | 5 g,h,l,o,x         | 0                          |
|                | 09/04/03 | 0                          | 0                                 | 0                   | 0                          |
|                | 11/12/03 | 4                          | 0                                 | 4                   | 0                          |
|                | 11/07/04 | 0                          | 0                                 | 1 x                 | 0                          |
|                | Median   |                            |                                   |                     |                            |
|                | Maximum  |                            |                                   |                     |                            |
|                | Minimum  |                            |                                   |                     |                            |

|                               |          |     |        | Oil &  |        |      | Specific    | Lab   | Surfactants | Ortho-    | Total       |
|-------------------------------|----------|-----|--------|--------|--------|------|-------------|-------|-------------|-----------|-------------|
| Location                      | Date     | Q   | Temp   | Grease | TSS    | TDS  | Conductance | pН    | (MBAS)      | Phosphate | Phosphorous |
|                               |          | cfs | Deg. C | mg/L   | mg/L   | mg/L | umho/cm     | units | mg/L        | mg/L      | mg/L        |
|                               | 10/24/92 | 32  | 17.8   | < 3    | 280    | 100  |             | 7.9   | 0.21        | 0.41      | 0.4         |
|                               | 02/08/93 | 56  | 10.5   | < 3    | 830    | 130  |             | 8.2   | < 0.10      | 0.64      | 4.7         |
|                               | 07/19/94 | 24  | 23.4   |        | 6,540  | 430  | 611         | 7.3   | 0.61        | 0.09      | 2.1         |
|                               | 08/09/94 | 5   | 24.1   | < 3    | 16,200 | 440  | 598         | 7.9   | 0.31        | 0.09      | 2.0         |
|                               | 08/19/94 | 2   | 23.1   | < 3    | 4,010  | 390  | 626         | 8.0   | < 0.05      | < 0.05    | 0.8         |
|                               | 01/24/95 |     | 10.0   | < 3    | 3,540  | 230  | 3           | 8.1   | 0.22        | 0.08      |             |
|                               | 08/12/95 | 5   | 27.3   | 3      | 3,390  | 510  | 620         | 7.4   | 0.75        | 0.24      | 3.1         |
|                               | 11/21/96 | 63  | 16.9   | < 3    | 5,230  | 240  | 413         | 8.0   | < 0.05      | 0.51      | 1.7         |
| Sloan Channel                 | 07/22/97 |     | 27.0   | 1,060  | 230    | 200  | 297         | 8.1   |             | 0.44      | 0.1         |
| (Range Wash) at<br>Charleston | 08/08/97 |     |        | 4      | 1,500  | 240  |             | 7.9   | 1.53        | 0.08      | 0.5         |
| Charleston                    | 08/14/98 | 30  |        | < 3    | 4,060  | 330  |             |       |             |           | 1.0         |
|                               | 02/16/00 |     |        | < 3    | 1,970  | 200  |             |       |             |           | 1.7         |
|                               | 02/26/01 |     |        | < 3    | 220    | 110  |             |       |             |           | 0.3         |
|                               | 02/12/03 | 99  |        | < 3    | 79     | 110  | 172         | 7.2   | 0.31        | 0.18      | 0.3         |
|                               | 10/20/04 |     |        | < 5    | 270    | 180  | 263         | 7.9   | 0.56        | 0.30      | 0.5         |
|                               | Median   | 30  | 23.1   | < 3    | 1,970  | 230  | 413         | 7.9   | < 0.31      | 0.21      | 0.9         |
|                               | Maximum  | 99  | 27.3   | 1,060  | 16,200 | 510  | 626         | 8.2   | 1.53        | 0.64      | 4.7         |
|                               | Minimum  | 2   | 10.0   | < 3    | 79     | 100  | 3           | 7.2   | < 0.05      | < 0.05    | 0.1         |


| Location                         | Date     | NO3-N<br>mg/L | NO-2<br>mg/L | NH3-N<br>mg/L | TKN<br>mg/L | <b>Total</b><br>Nitrogen<br>mg/L | <b>Copper</b><br>mg/L | Dissolved<br>Copper<br>mg/L | <b>Chromium</b><br>mg/L | <b>Lead</b><br>mg/L |
|----------------------------------|----------|---------------|--------------|---------------|-------------|----------------------------------|-----------------------|-----------------------------|-------------------------|---------------------|
|                                  | 10/24/92 | 0.50          | iiig, E      | 0.20          | 1.1         | 1.6                              | 0.028                 | ing/L                       | 0.019                   | 0.020               |
|                                  | 02/08/93 | 0.40          |              | 0.14          | < 1.0       | 1.4                              | 0.017                 |                             | 0.021                   | 0.018               |
|                                  | 07/19/94 | 2.30          |              | 1.20          | 1.7         | 4.0                              | 0.068                 |                             | 0.057                   | 0.063               |
|                                  | 08/09/94 | 1.30          |              | 0.14          | 2.7         | 4.0                              | 0.049                 |                             | 0.031                   | 0.086               |
|                                  | 08/19/94 | 2.00          |              | 0.37          | 3.1         | 5.1                              | 0.040                 |                             | 0.035                   | 0.037               |
|                                  | 01/24/95 | 8.70          |              | 0.70          | 2.5         | 11.2                             | 0.064                 |                             | 0.058                   | < 0.100             |
|                                  | 08/12/95 | < 0.20        |              | 0.40          | 8.0         | 8.2                              | 0.056                 |                             | 0.035                   | 0.029               |
|                                  | 11/21/96 | 1.10          |              | 0.50          | 3.7         | 4.8                              | 0.033                 |                             |                         | < 0.100             |
| Sloan Channel<br>(Range Wash) at | 07/22/97 | 0.90          |              | 1.00          | 2.5         | 3.4                              | 0.029                 |                             |                         | < 0.100             |
| (Kange Wash) at<br>Charleston    | 08/08/97 | 2.00          |              | 2.50          | 6.1         | 8.1                              | 0.150                 |                             |                         | 0.210               |
| Charleston                       | 08/14/98 | 2.50          |              | 0.66          | 5.8         | 8.3                              | 0.110                 | 0.011                       |                         | < 0.100             |
|                                  | 02/16/00 | 1.74          |              | 0.49          | 3.9         | 5.6                              | 0.012                 | < 0.010                     |                         | < 0.100             |
|                                  | 02/26/01 | 0.64          |              | 0.28          | 1.3         | 1.9                              | 0.029                 | < 0.010                     |                         | 0.011               |
|                                  | 02/12/03 | 0.73          | < 0.1        |               | 2.0         | 2.7                              | 0.018                 | < 0.010                     | 0.004                   | 0.006               |
|                                  | 10/20/04 | 0.90          | < 0.1        |               | 2.6         | 3.5                              | 0.028                 | 0.013                       |                         | 0.010               |
|                                  | Median   | 1.10          | < 0.1        | 0.49          | 2.6         | 4.0                              | 0.033                 | 0.010                       | 0.033                   | 0.063               |
|                                  | Maximum  | 8.70          | < 0.1        | 2.50          | 8.0         | 11.2                             | 0.150                 | 0.013                       | 0.058                   | 0.210               |
|                                  | Minimum  | < 0.20        | < 0.1        | 0.14          | < 1.0       | 1.4                              | 0.012                 | < 0.010                     | 0.004                   | 0.006               |

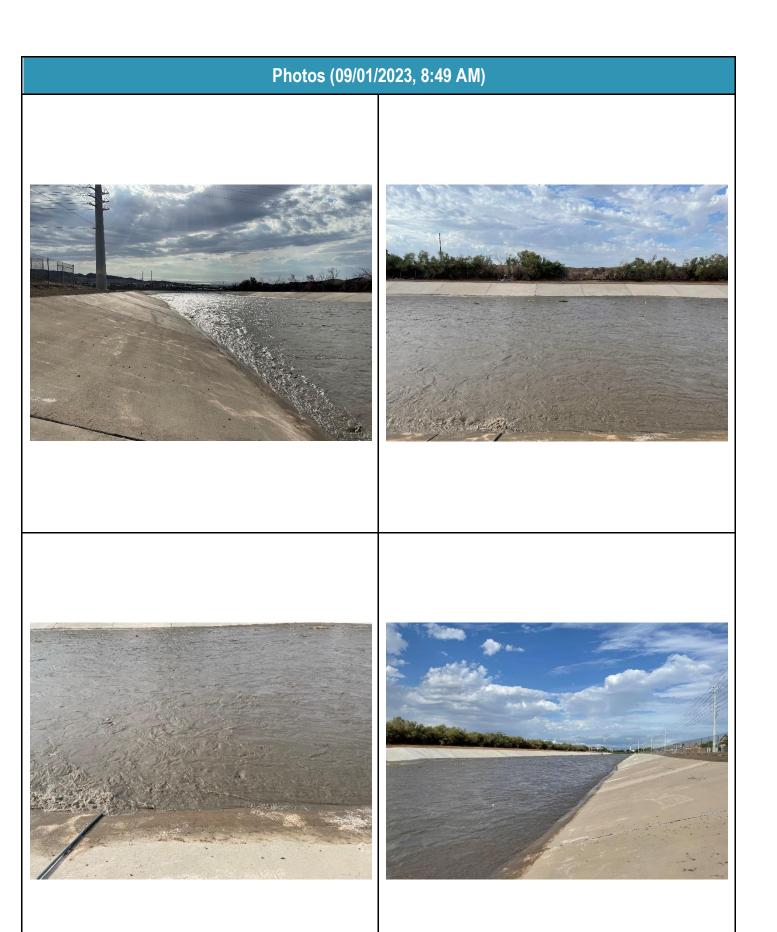
|                               |          | Di | ssolved |     |         |   |         |      |   | Dissolved |   |        |   |        |   |          |   |         |
|-------------------------------|----------|----|---------|-----|---------|---|---------|------|---|-----------|---|--------|---|--------|---|----------|---|---------|
| Location                      | Date     | ]  | Lead    | ] ] | Mercury | ( | Cadmium | Zinc |   | Zinc      |   | Silver |   | Nickel | 5 | Selenium |   | Arsenic |
|                               |          |    | mg/L    |     | mg/L    |   | mg/L    | mg/L |   | mg/L      |   | mg/L   |   | mg/L   |   | mg/L     |   | mg/L    |
|                               | 10/24/92 |    |         | <   | 0.0002  | < | 0.005   | 0.17 |   |           | < | 0.010  | < | 0.040  |   |          | < | 0.025   |
|                               | 02/08/93 |    |         | <   | 0.0002  | < | 0.005   | 0.11 |   |           | < | 0.010  | < | 0.040  | < | 0.005    |   | 0.010   |
|                               | 07/19/94 |    |         | <   | 0.0002  | < | 0.005   | 0.31 |   |           | < | 0.010  |   | 0.046  | < | 0.010    |   | 0.049   |
|                               | 08/09/94 |    |         |     | 0.0002  | < | 0.005   | 0.17 |   |           | < | 0.010  |   | 0.028  | < | 0.005    |   | 0.061   |
|                               | 08/19/94 |    |         | <   | 0.0002  | < | 0.005   | 0.15 |   |           | < | 0.010  |   | 0.026  |   | 0.027    |   | 0.027   |
|                               | 01/24/95 |    |         | <   | 0.0002  | < | 0.005   | 0.29 |   |           | < | 0.010  |   | 0.044  | < | 0.005    |   |         |
|                               | 08/12/95 |    |         | <   | 0.0002  | < | 0.005   | 0.30 |   |           | < | 0.010  |   | 0.030  | < | 0.005    |   | 0.018   |
|                               | 11/21/96 |    |         |     |         |   |         | 0.20 |   |           |   |        |   |        |   |          |   |         |
| Sloan Channel                 | 07/22/97 |    |         |     |         |   |         | 0.26 |   |           |   |        |   |        |   |          |   |         |
| (Range Wash) at<br>Charleston | 08/08/97 |    |         |     |         |   |         | 0.62 |   |           |   |        |   |        |   |          |   |         |
| Charleston                    | 08/14/98 | <  | 0.1000  |     |         |   |         | 0.44 | < | 0.02      |   |        |   |        |   |          |   |         |
|                               | 02/16/00 | <  | 0.1000  |     |         |   |         | 0.05 | < | 0.02      |   |        |   |        |   |          |   |         |
|                               | 02/26/01 | <  | 0.0005  |     |         |   |         | 0.12 | < | 0.02      |   |        |   |        |   |          |   |         |
|                               | 02/12/03 | <  | 0.1000  | <   | 0.0002  | < | 0.001   | 0.08 | < | 0.02      | < | 0.001  | < | 0.001  | < | 0.050    |   | 0.003   |
|                               | 10/20/04 | <  | 0.0200  |     | 0.0002  | < | 0.005   |      |   |           | < | 0.001  |   | 0.009  | < | 0.010    |   | 0.005   |
|                               | Median   | <  | 0.1000  | <   | 0.0002  | < | 0.005   | 0.19 | < | 0.02      | < | 0.010  |   | 0.030  | < | 0.008    |   | 0.022   |
|                               | Maximum  | <  | 0.1000  |     | 0.0002  | < | 0.005   | 0.62 | < | 0.02      | < | 0.010  |   | 0.046  | < | 0.050    |   | 0.061   |
|                               | Minimum  | <  | 0.0005  | <   | 0.0002  | < | 0.001   | 0.05 | < | 0.02      | < | 0.001  | < | 0.001  | < | 0.005    |   | 0.003   |

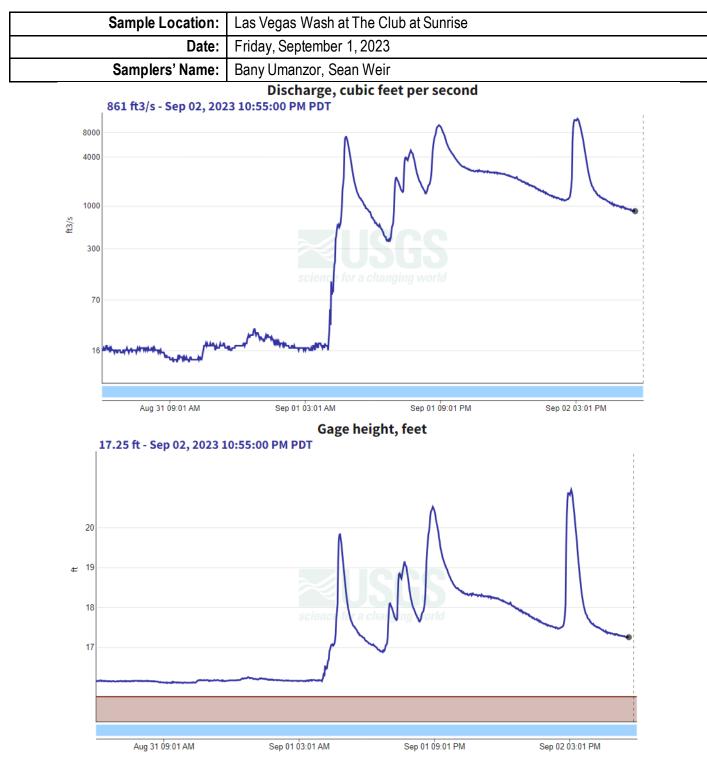
| Location        | Date     | Boron<br>mg/L | Cyanide<br>mg/L | BOD<br>mg/L | COD<br>mg/L | <b>Color</b><br>ACU | <b>Turbidity</b><br>NTU | <b>Phenol</b><br>mg/L | Petroleum<br>Hydrocarbons | TPH<br>(diesel)<br>MPN/100 mL |
|-----------------|----------|---------------|-----------------|-------------|-------------|---------------------|-------------------------|-----------------------|---------------------------|-------------------------------|
|                 | 10/24/92 | 0.08          | 0.005           | 12          | 74          | 10.0                | 0                       | < 0.01                |                           | 101110/100011112              |
|                 | 02/08/93 | 0.08          | < 0.005         | < 6         | 46          | 15.0                | 600                     | 0.20                  |                           |                               |
|                 | 07/19/94 | 0.24          | 0.007           | 28          | 135         | 100.0               | 3                       | 0.04                  |                           |                               |
|                 | 08/09/94 | 0.93          | < 0.005         | 15          | 295         | 75.0                | 1                       | < 0.01                |                           |                               |
|                 | 08/19/94 | 0.24          | < 0.005         | 10          | 115         | 150.0               | 1,350                   | < 0.01                |                           |                               |
|                 | 01/24/95 | 0.11          | 0.010           | 14          | 97          | 15.0                | 1,100                   | 0.10                  |                           | < 1                           |
|                 | 08/12/95 | 0.20          | < 0.005         | 59          | 375         | 250.0               | 63                      | 0.10                  |                           | < 1                           |
|                 | 11/21/96 | 0.15          | < 0.005         | 17          | 140         | 37.0                | 1,600                   | < 0.01                | < 1                       |                               |
| Sloan Channel   | 07/22/97 | 0.12          | < 0.005         | 26          | 130         | 200.0               | 240                     | < 0.01                | < 1                       |                               |
| (Range Wash) at | 08/08/97 | 0.18          | 0.330           | 41          | 310         | 150.0               | 600                     | 0.01                  |                           |                               |
| Charleston      | 08/14/98 | 0.24          |                 |             |             |                     |                         |                       |                           |                               |
|                 | 02/16/00 | 0.10          |                 |             |             |                     |                         |                       |                           |                               |
|                 | 02/26/01 |               |                 |             |             |                     |                         |                       |                           |                               |
|                 | 02/12/03 | < 0.05        |                 |             |             |                     |                         |                       |                           |                               |
|                 | 10/20/04 | 0.10          |                 |             |             |                     |                         |                       |                           |                               |
|                 | Median   | 0.14          | < 0.005         | 16          | 133         | 87.5                | 420                     | < 0.01                | < 1                       | < 1                           |
|                 | Maximum  | 0.93          | 0.330           | 59          | 375         | 250.0               | 1,600                   | 0.20                  | < 1                       | < 1                           |
|                 | Minimum  | < 0.05        | < 0.005         | < 6         | 46          | 10.0                | 0.170                   | < 0.01                | < 1                       | < 1                           |

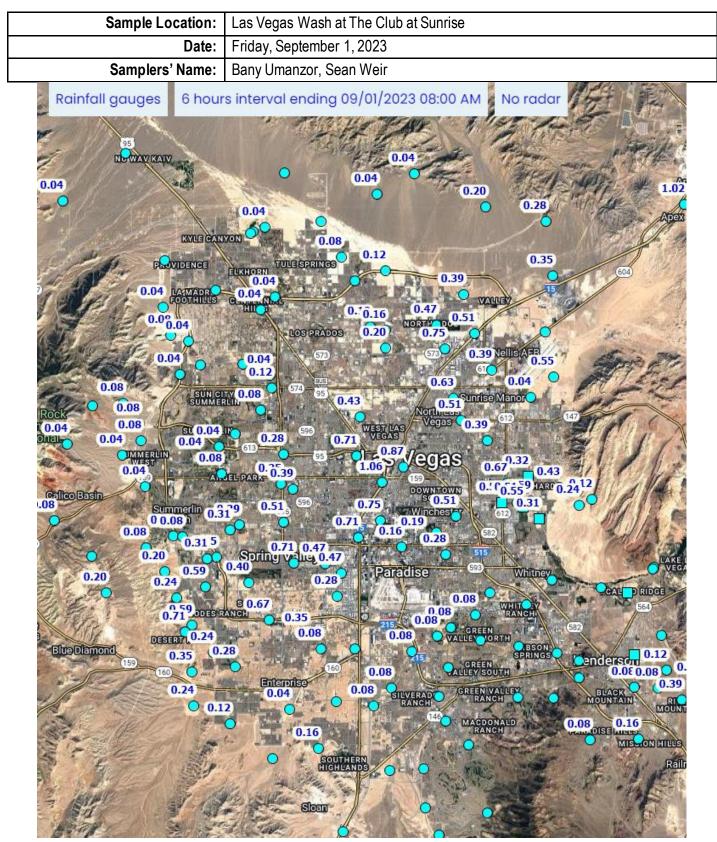
| Location                         | Date     | <b>TPH</b><br>(gasoline)<br>MPN/100 mL | Total<br>Chlorine<br>mg/L | Fecal<br>Coliform<br>MPN/100 mL | Fecal*<br>Coliform<br>MPN/100 mL | Fecal**<br>Coliform<br>MPN/100 mL | Fecal<br>Strep.<br>MPN/100 mL | Fecal*<br>Strep.<br>MPN/100 mL | Fecal**<br>Strep.<br>MPN/100 mL | <b>Salmonella</b><br>MPN/100 mL |
|----------------------------------|----------|----------------------------------------|---------------------------|---------------------------------|----------------------------------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|
|                                  | 10/24/92 |                                        | < 0.10                    | 5,000                           |                                  |                                   | 130,000                       |                                |                                 |                                 |
|                                  | 02/08/93 |                                        | < 0.10                    | 1,300                           |                                  | 1,400                             | 24,000                        |                                | 50,000                          |                                 |
|                                  | 07/19/94 |                                        | < 0.10                    | 28,000                          | 23,000                           | 23,000                            | 22,000                        | 30,000                         | 30,000                          | 12.0                            |
|                                  | 08/09/94 |                                        | < 0.10                    |                                 | 170,000                          | 30,000                            |                               | 70,000                         | 23,000                          | < 2.0                           |
|                                  | 08/19/94 |                                        | < 0.10                    | 30,000                          | 80,000                           | 130,000                           | 23,000                        | 35,000                         | 9,000                           | 170.0                           |
|                                  | 01/24/95 | < 1                                    | < 0.01                    |                                 |                                  | 3,000                             |                               |                                | 17,000                          | 4.0                             |
|                                  | 08/12/95 | < 1                                    | < 0.01                    |                                 |                                  | > 160,000                         |                               |                                | > 1,600                         | < 14.0                          |
|                                  | 11/21/96 |                                        | < 0.01                    | 240                             |                                  |                                   | 9,300                         |                                |                                 | < 2.2                           |
| Sloan Channel<br>(Range Wash) at | 07/22/97 |                                        | < 0.10                    | 90,000                          |                                  |                                   | 90,000                        |                                |                                 | < 2.2                           |
| (Kange Wash) at<br>Charleston    | 08/08/97 |                                        |                           | 5,000                           |                                  |                                   | 160,000                       |                                |                                 | < 2.2                           |
| Charleston                       | 08/14/98 |                                        |                           | 3,000                           |                                  |                                   | 160,000                       |                                |                                 | < 2.2                           |
|                                  | 02/16/00 |                                        |                           | 11,000                          |                                  |                                   | 30,000                        |                                |                                 |                                 |
|                                  | 02/26/01 |                                        |                           | 5,000                           |                                  |                                   | 50,000                        |                                |                                 |                                 |
|                                  | 02/12/03 |                                        |                           | 5,000                           |                                  |                                   | 80,000                        |                                |                                 |                                 |
|                                  | 10/20/04 |                                        |                           | 17,000                          |                                  |                                   | 30,000                        |                                |                                 |                                 |
|                                  | Median   | < 1                                    | < 0.10                    | 5,000                           | 80,000                           | 26,500                            | 40,000                        | 35,000                         | 20,000                          | < 2.2                           |
|                                  | Maximum  | < 1                                    | < 0.10                    | 90,000                          | 170,000                          | 160,000                           | 160,000                       | 70,000                         | 50,000                          | 170.0                           |
|                                  | Minimum  | < 1                                    | < 0.01                    | 240                             | 23,000                           | 1,400                             | 9,300                         | 30,000                         | > 1,600                         | < 2.0                           |

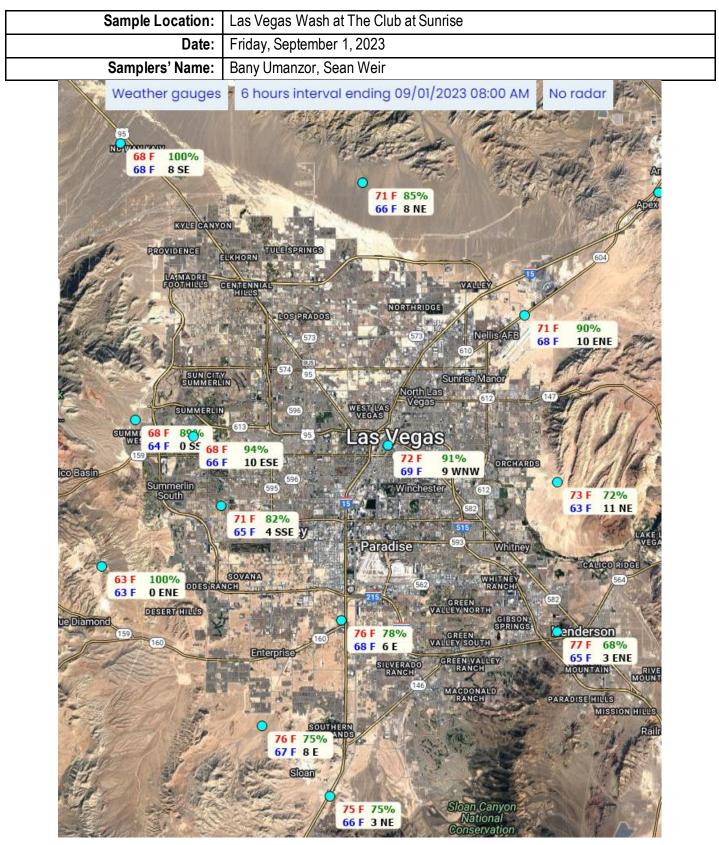
| Location                      | Date     | <b>VOC</b><br># of detects | <b>Pesticides</b><br># of detects | <b>SOC</b><br># of detects | Herbicides<br># of detects |
|-------------------------------|----------|----------------------------|-----------------------------------|----------------------------|----------------------------|
|                               | 10/24/92 |                            |                                   |                            |                            |
|                               | 02/08/93 |                            |                                   |                            |                            |
|                               | 07/19/94 |                            |                                   |                            |                            |
|                               | 08/09/94 |                            |                                   |                            |                            |
|                               | 08/19/94 |                            |                                   |                            |                            |
|                               | 01/24/95 |                            |                                   |                            |                            |
|                               | 08/12/95 |                            |                                   |                            |                            |
|                               | 11/21/96 |                            | 1 c,m,ii,jj,kk,ll                 |                            | 1 hh                       |
| Sloan Channel                 | 07/22/97 |                            | 0                                 |                            | 1                          |
| (Range Wash) at<br>Charleston | 08/08/97 |                            | 0                                 |                            | 0                          |
| Charleston                    | 08/14/98 | 1 a                        | 0                                 |                            | 1 hh                       |
|                               | 02/16/00 | 1 a                        | 0                                 |                            | 0                          |
|                               | 02/26/01 | 1 a                        | 0                                 |                            | 0                          |
|                               | 02/12/03 | 1 a                        | 0                                 | 9 g,h,i,j,k,l,u,v,x        |                            |
|                               | 10/20/04 | 1 a                        | 0                                 | 4 x,h,g,k                  | 1 uu                       |
|                               | Median   |                            |                                   |                            |                            |
|                               | Maximum  |                            |                                   |                            |                            |
|                               | Minimum  |                            |                                   |                            |                            |




## Appendix A-2


A-2: Storm and Wet Weather Reports (2023-2024)


# **FC**


## NPDES Storm Write Up and Wet Weather Sample Collection Form CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT | LAS VEGAS VALLEY MUNICIPAL SEPARATE STORM SEWER SYSTEM (MS4) PROJECT

| Sample Location:                                                                                                | Las Vegas Wash at The C        | lub at Sunrise                                                 |                            |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| Date:                                                                                                           | Friday, September 1, 2023      | }                                                              |                            |  |  |  |  |  |  |
| Samplers' Name:                                                                                                 | Bany Umanzor, Sean Wei         | r                                                              |                            |  |  |  |  |  |  |
|                                                                                                                 | Sample Collection              | Information                                                    |                            |  |  |  |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected:                                                                       | 8:49 AM                        |                                                                |                            |  |  |  |  |  |  |
| Time of Grab Sample Collected:                                                                                  | 9:11 AM                        |                                                                |                            |  |  |  |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected:                                                                      | 9:37 AM                        |                                                                |                            |  |  |  |  |  |  |
| Sample Intervals:                                                                                               | ervals: 2 minutes              |                                                                |                            |  |  |  |  |  |  |
| Air Temperature (°F):                                                                                           | 76                             | 76 Water Temperature (°F): -                                   |                            |  |  |  |  |  |  |
| Relative Humidity (%RH):                                                                                        | 66                             | Conductivity (mS/cm):                                          | -                          |  |  |  |  |  |  |
| 5-minute Precipitation (inches):                                                                                | -                              | Discharge (cfs):                                               | -                          |  |  |  |  |  |  |
| Turbidity (NTU):                                                                                                | -                              | Photos:                                                        | Attached                   |  |  |  |  |  |  |
| Sampling Notes:                                                                                                 |                                | combined into one composite sa<br>form was 8:49 AM and the sam |                            |  |  |  |  |  |  |
|                                                                                                                 | Weather Con                    |                                                                |                            |  |  |  |  |  |  |
| On Friday, Contempor 1, 2022, thursday                                                                          | (Temperature, storm l          |                                                                | through the morning Dain   |  |  |  |  |  |  |
| On Friday, September 1, 2023, thunder gages reported between 0.04 – 0.75 in and 79°F. Wind speeds ranged from 2 | ches before sampling. Through  | nout the Las Vegas Valley, temp                                | eratures were between 73°F |  |  |  |  |  |  |
|                                                                                                                 | Site Stat                      | us                                                             |                            |  |  |  |  |  |  |
|                                                                                                                 | naintenance required? Any equi |                                                                |                            |  |  |  |  |  |  |
| No new updates.                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |
|                                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |
|                                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |
|                                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |
| Additional Information                                                                                          |                                |                                                                |                            |  |  |  |  |  |  |
| No additional information at this time.                                                                         |                                |                                                                |                            |  |  |  |  |  |  |
|                                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |
|                                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |
|                                                                                                                 |                                |                                                                |                            |  |  |  |  |  |  |





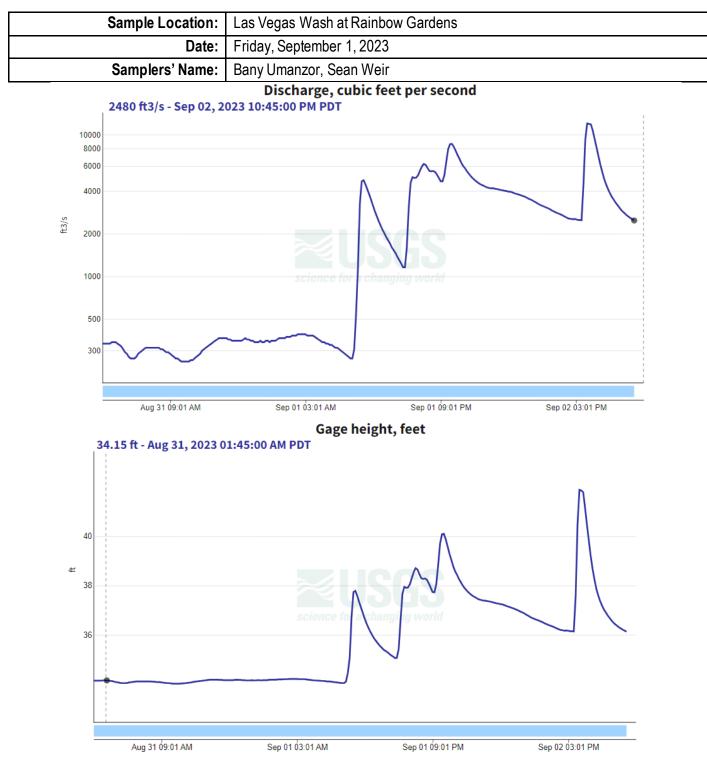


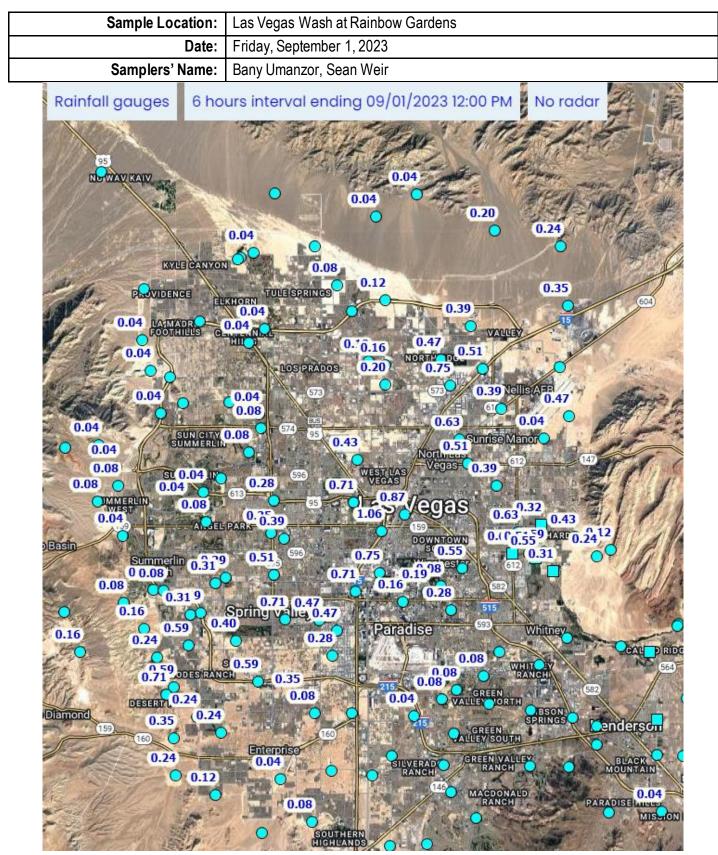


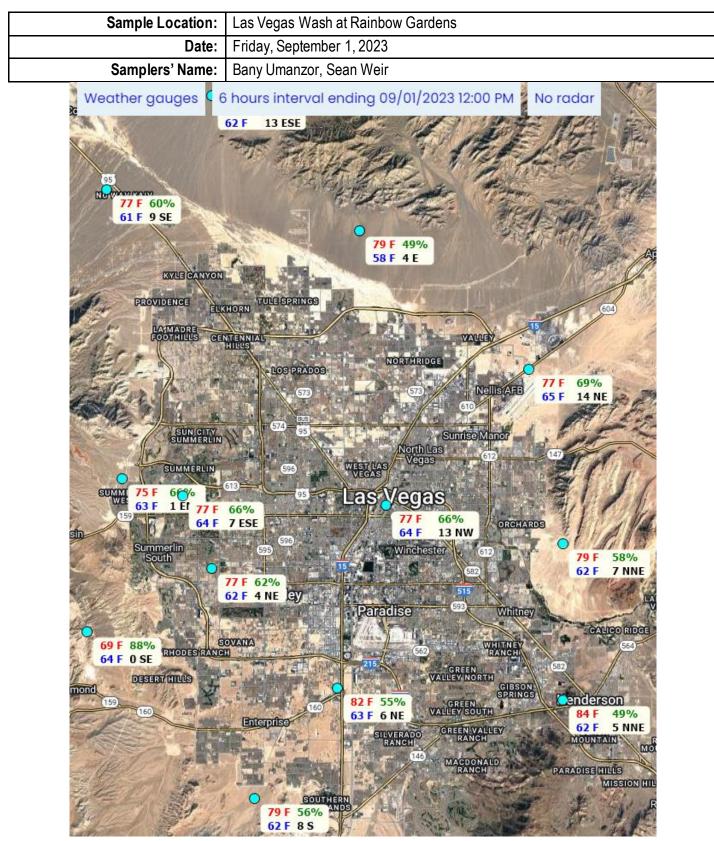
# **FC**

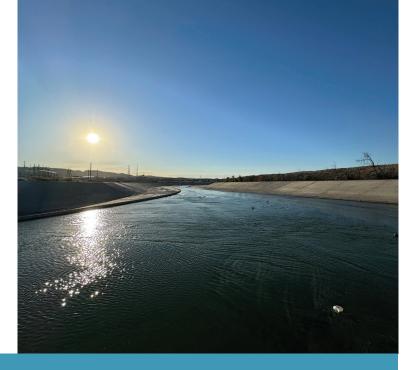
## NPDES Storm Write Up and Wet Weather Sample Collection Form CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT | LAS VEGAS VALLEY MUNICIPAL SEPARATE STORM SEWER SYSTEM (MS4) PROJECT

| Sample Location: Las Vegas Wash at Rainbow Gardens                                                               |                                    |                                                                 |                            |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| Date:                                                                                                            | Friday, September 1, 2023          |                                                                 |                            |  |  |  |  |  |  |
| Samplers' Name:                                                                                                  | Bany Umanzor, Sean Wei             |                                                                 |                            |  |  |  |  |  |  |
| ·                                                                                                                | Sample Collection                  |                                                                 |                            |  |  |  |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected:                                                                        | 12:27 PM                           | 12:27 PM                                                        |                            |  |  |  |  |  |  |
| Time of Grab Sample Collected:                                                                                   | 12:49 PM                           | 12:49 PM                                                        |                            |  |  |  |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected:                                                                       | 1:10 PM                            |                                                                 |                            |  |  |  |  |  |  |
| Sample Intervals:                                                                                                | 2 minutes                          |                                                                 |                            |  |  |  |  |  |  |
| Air Temperature (°F):                                                                                            | 73                                 | Water Temperature (°F):                                         | -                          |  |  |  |  |  |  |
| Relative Humidity (%RH):                                                                                         | 82                                 | Conductivity (mS/cm):                                           | -                          |  |  |  |  |  |  |
| 5-minute Precipitation (inches):                                                                                 | -                                  | Discharge (cfs):                                                | -                          |  |  |  |  |  |  |
| Turbidity (NTU):                                                                                                 | -                                  | Photos:                                                         | Attached                   |  |  |  |  |  |  |
| Sampling Notes:                                                                                                  |                                    | combined into one composite sa<br>form was 12:27 PM and the san |                            |  |  |  |  |  |  |
|                                                                                                                  | Weather Con<br>(Temperature, storm |                                                                 |                            |  |  |  |  |  |  |
| On Friday, September 1, 2023, thunder gages reported between 0.04 – 1.06 ind and 77°F. Wind speeds ranged from 4 | ches before sampling. Through      | nout the Las Vegas Valley, temp                                 | eratures were between 73°F |  |  |  |  |  |  |
|                                                                                                                  | Site Stat                          | us                                                              |                            |  |  |  |  |  |  |
| (Any n<br>No new updates.                                                                                        | naintenance required? Any equi     | pment missing or damaged?)                                      |                            |  |  |  |  |  |  |
| no new updates.                                                                                                  |                                    |                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                  |                                    |                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                  |                                    |                                                                 |                            |  |  |  |  |  |  |
| Additional Information No additional information                                                                 |                                    |                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                  |                                    |                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                  |                                    |                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                  |                                    |                                                                 |                            |  |  |  |  |  |  |


### Photos (09/01/2023, 12:27 PM)







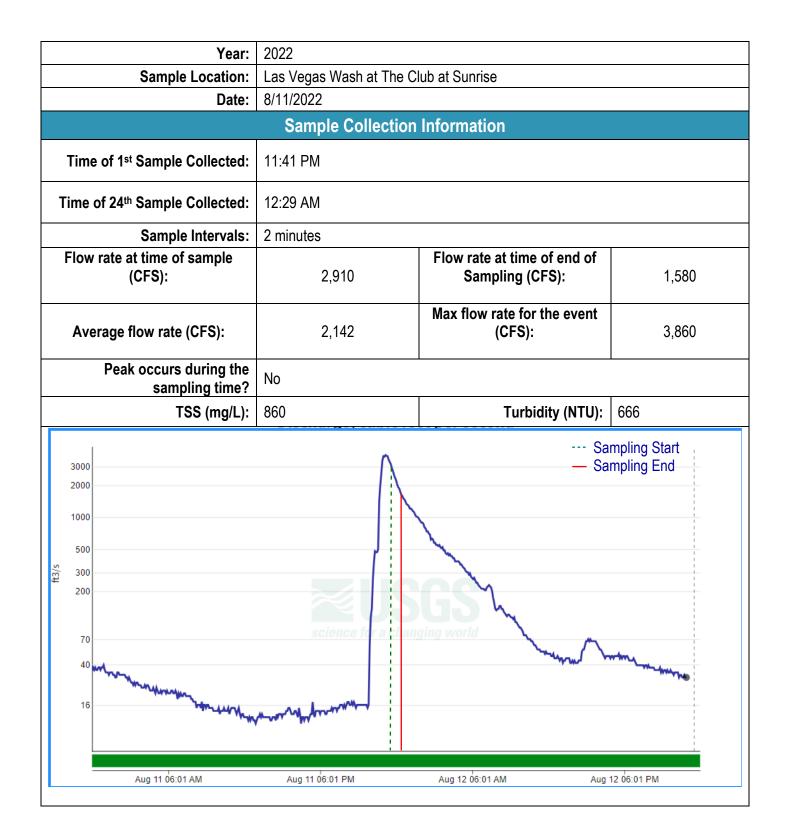




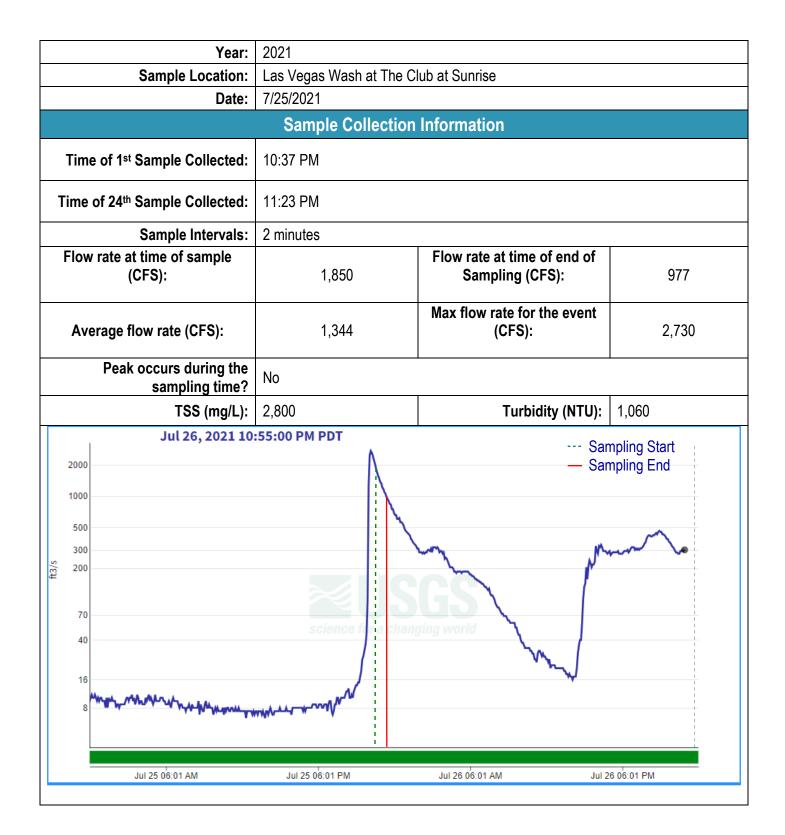



### Appendix B B: Hydrographs

### **Club at Sunrise Hydrographs**




DRAFT for review purposes only. Use of contents on this sheet is subject to the limitations specified at the end of this document. Wet Weather Sampling Hydrographs


1

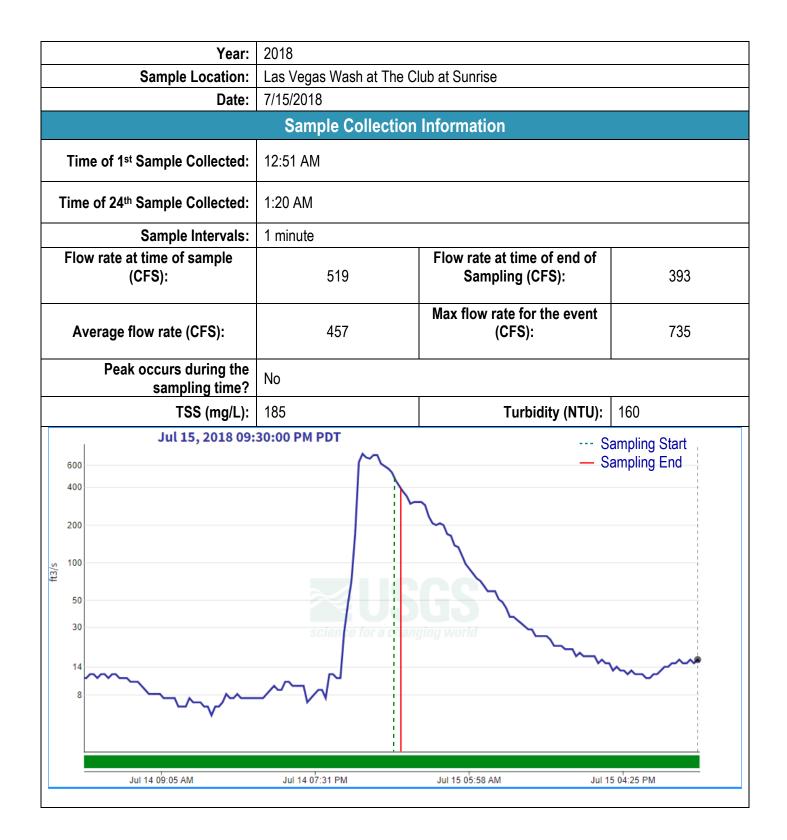
| Year:                                              | 2023                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
|----------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Sample Location:                                   | Las Vegas Wash at The | Club at Sunrise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| Date:                                              | 9/1/2023              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
|                                                    | Sample Collection     | on Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Time of 1 <sup>st</sup> Sample Collected:          | 8:49 AM               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| Time of 24 <sup>th</sup> Sample Collected:         | 9:37 AM               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| Sample Intervals:                                  | 2 minutes             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| Flow rate at time of sample<br>(CFS):              | 5,140                 | Flow rate at time of end of Sampling (CFS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,970                        |
| Average flow rate during sampling (CFS):           | 3,323                 | Max flow rate for the event (CFS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,010                        |
| Peak occurs during the<br>sampling time?           | No                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| TSS (mg/L):                                        | 867                   | Turbidity (NTU):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 731                          |
|                                                    | Discharge, cubic      | feet per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 8000<br>4000<br>1000<br>300<br>70                  | science fin a cl      | A second |                              |
| 16 ###yought #*################################### | man                   | Sa<br>— Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mpling Start –<br>mpling End |
| Aug 31 09:01 AM                                    | Sep 01 03:01 AM       | Sep 01 09:01 PM Sep 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03:01 PM                     |

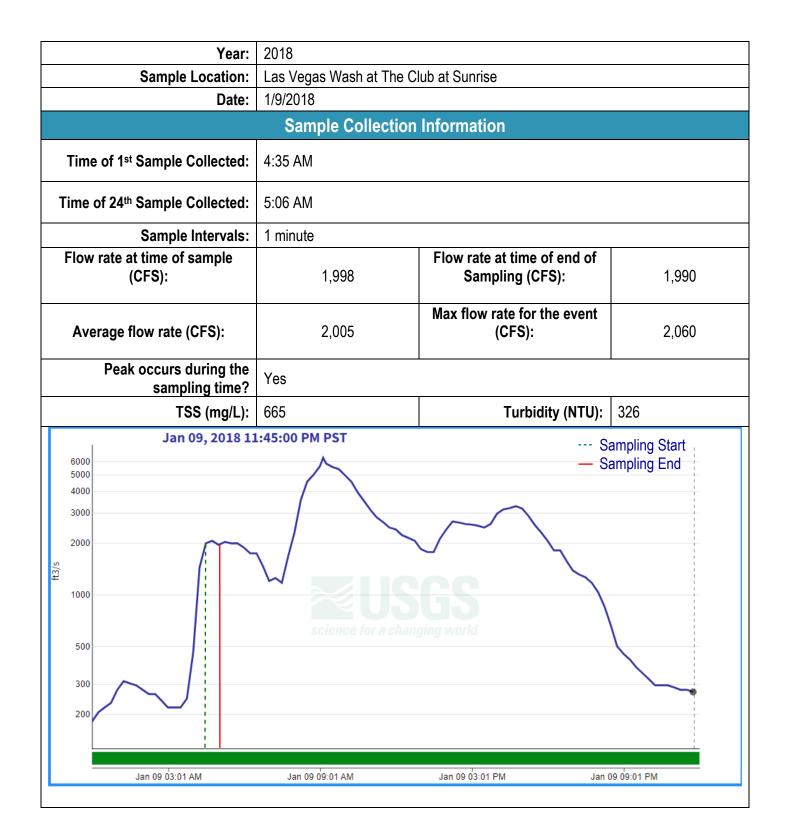
|       | Year:                                     | 2023                 |                                             |              |
|-------|-------------------------------------------|----------------------|---------------------------------------------|--------------|
|       | Sample Location:                          | Las Vegas Wash at Th | e Club at Sunrise                           |              |
|       | Date:                                     | 6/16/2023            |                                             |              |
|       |                                           | Sample Collecti      | ion Information                             |              |
|       | Time of 1 <sup>st</sup> Sample Collected: | 10:00 AM             |                                             |              |
| Ti    | ime of 24 <sup>th</sup> Sample Collected: | 10:25 AM             |                                             |              |
|       | Sample Intervals:                         | 1 minute             |                                             |              |
| F     | Flow rate at time of sample<br>(CFS):     | 1,160                | Flow rate at time of end of Sampling (CFS): | 945          |
|       | Average flow rate (CFS):                  | 1,054                | Max flow rate for the event (CFS):          | 1,740        |
|       | Peak occurs during the<br>sampling time?  | No                   |                                             |              |
|       | TSS (mg/L):                               | 560                  | Turbidity (NTU):                            | 353          |
| ft3/s | Jun 16, 2023 10                           | D:55:00 PM PDT       |                                             | npling Start |
|       | Jun 16 03:01 AM                           | Jun 16 09:01 AM      | Jun 16 03:01 PM Jun 1                       | 16 09:01 PM  |



|                  | Year:                                     |                                       |                                                |                                |  |
|------------------|-------------------------------------------|---------------------------------------|------------------------------------------------|--------------------------------|--|
|                  | Sample Location:                          | Las Vegas Wash at The Club at Sunrise |                                                |                                |  |
|                  | Date:                                     | Date: 7/25/2022                       |                                                |                                |  |
|                  | Sample Collection Information             |                                       |                                                |                                |  |
|                  | Time of 1 <sup>st</sup> Sample Collected: | 6:22 PM                               |                                                |                                |  |
| Ti               | ime of 24 <sup>th</sup> Sample Collected: | 6:46 PM                               |                                                |                                |  |
|                  | Sample Intervals:                         | 1 minute                              |                                                |                                |  |
| F                | Flow rate at time of sample<br>(CFS):     | 477                                   | Flow rate at time of end of<br>Sampling (CFS): | 356                            |  |
|                  | Average flow rate (CFS):                  | 428                                   | Max flow rate for the event (CFS):             | 619                            |  |
|                  | Peak occurs during the<br>sampling time?  | No                                    |                                                | 1                              |  |
|                  | TSS (mg/L):                               | 825                                   | Turbidity (NTU):                               | 526                            |  |
| 5<br>4<br>3<br>2 | Jul 25, 2022 10:                          | 55:00 PM PDT                          |                                                | Sampling Start<br>Sampling End |  |
|                  | Jul 25 03:01 AM                           | Jul 25 09:01 AM                       | Jul 25 03:01 PM Jul 2                          | 5 09:01 PM                     |  |



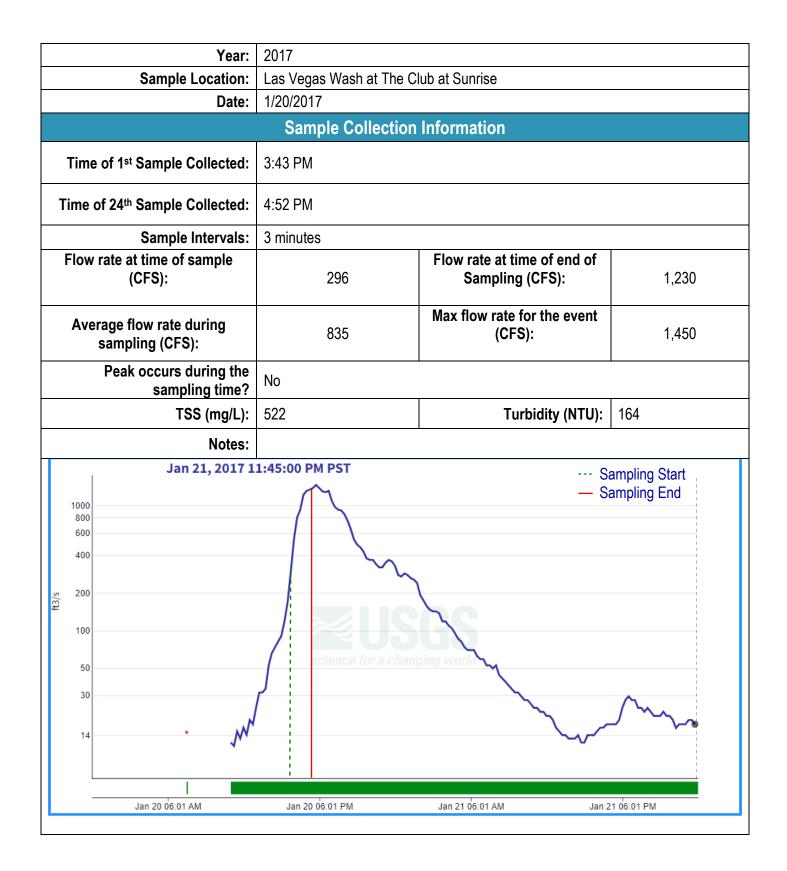

| Year:                                                                                               | Year: 2020              |                                                |                              |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|------------------------------|--|--|
| Sample Location:                                                                                    | Las Vegas Wash at The C | Las Vegas Wash at The Club at Sunrise          |                              |  |  |
| Date:                                                                                               | 3/11/2020               |                                                |                              |  |  |
|                                                                                                     | Sample Collection       | Information                                    |                              |  |  |
| Time of 1 <sup>st</sup> Sample Collected:                                                           | 12:33 AM                |                                                |                              |  |  |
| Time of 24 <sup>th</sup> Sample Collected:                                                          | 1:46 AM                 |                                                |                              |  |  |
| Sample Intervals:                                                                                   | 3 minutes               |                                                |                              |  |  |
| Flow rate at time of sample<br>(CFS):                                                               | 1,880                   | Flow rate at time of end of<br>Sampling (CFS): | 1,810                        |  |  |
| Average flow rate during sampling (CFS):                                                            | 1,850                   | Max flow rate for the event (CFS):             | 1,880                        |  |  |
| Peak occurs during the<br>sampling time?                                                            | Yes                     |                                                |                              |  |  |
| TSS (mg/L):                                                                                         | 204                     | Turbidity (NTU):                               | 169                          |  |  |
| Notes:                                                                                              | Only 4 data available   |                                                |                              |  |  |
| Mar 11, 2020 1<br>1000<br>500<br>300<br>200<br>70<br>40<br>16<br>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | 0:55:00 PM PDT          |                                                | ampling Start<br>ampling End |  |  |
| Mar 10 06:01 AM                                                                                     | Mar 10 06:01 PM         | Mar 11 06:01 AM Mar 1                          | 1 06:01 PM                   |  |  |
|                                                                                                     |                         |                                                |                              |  |  |


| Year: 2019                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sample Location:                           | Las Vegas Wash at The C       | ub at Sunrise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Date:                                      | 11/28/2019                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                            | Sample Collection Information |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Time of 1 <sup>st</sup> Sample Collected:  | 5:01 PM                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Time of 24 <sup>th</sup> Sample Collected: | 6:10 PM                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample Intervals:                          | 3 minutes                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Flow rate at time of sample<br>(CFS):      | 2,000                         | Flow rate at time of end of<br>Sampling (CFS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Average flow rate (CFS):                   | 1,973                         | Max flow rate for the event (CFS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Peak occurs during the<br>sampling time?   | Yes                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| TSS (mg/L):                                | 410                           | Turbidity (NTU):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Notes:                                     | Only 3 data available         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Nov 29, 2019 1                             | 1:55:00 PM PST                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ampling Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 2000                                       | $\square$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ampling End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1000                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 500                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 300                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ي<br>ب<br>200                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4                                          |                               | N C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 70                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 40                                         | science for a chang           | Ing wones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                            |                               | marrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 16 mm hour hour and a                      |                               | and the second sec | and the second s |  |  |
| - where                                    | <b>Y</b>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Nov 28 06:01 AM                            | Nov 28 06:01 PM               | Nov 29 06:01 AM Nov 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 06:01 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

| Year:                                      | 2019                                  |                                                |                              |  |  |
|--------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------|--|--|
| Sample Location:                           | Las Vegas Wash at The Club at Sunrise |                                                |                              |  |  |
| Date:                                      | 11/20/2019                            |                                                |                              |  |  |
|                                            | Sample Collection                     | Information                                    |                              |  |  |
| Time of 1 <sup>st</sup> Sample Collected:  | 7:04 AM                               |                                                |                              |  |  |
| Time of 24 <sup>th</sup> Sample Collected: | 8:20 AM                               |                                                |                              |  |  |
| Sample Intervals:                          | 3 minutes                             |                                                |                              |  |  |
| Flow rate at time of sample<br>(CFS):      | 523                                   | Flow rate at time of end of<br>Sampling (CFS): | 1,740                        |  |  |
| Average flow rate (CFS):                   | 1,133                                 | Max flow rate for the event (CFS):             | 1,740                        |  |  |
| Peak occurs during the<br>sampling time?   | Yes                                   |                                                |                              |  |  |
| TSS (mg/L):                                | 120                                   | Turbidity (NTU):                               | 495                          |  |  |
| Notes:                                     | Missing data                          |                                                |                              |  |  |
| Nov 20, 2019 11                            | :50:00 PM PST                         | - Sa                                           | ampling Start<br>ampling End |  |  |
| Nov 20 03:01 AM                            | Nov 20 09:01 AM                       | Nov 20 03:01 PM Nov 2                          | 20 09:01 PM                  |  |  |

| Year: 2019                                 |                                       |                                             |              |  |  |  |
|--------------------------------------------|---------------------------------------|---------------------------------------------|--------------|--|--|--|
| Sample Location:                           | Las Vegas Wash at The Club at Sunrise |                                             |              |  |  |  |
| Date:                                      | 2/14/2019                             |                                             |              |  |  |  |
|                                            | Sample Collection Information         |                                             |              |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected:  | 9:56 AM                               |                                             |              |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected: | 10:22 AM                              |                                             |              |  |  |  |
| Sample Intervals:                          | 1 minute                              |                                             |              |  |  |  |
| Flow rate at time of sample<br>(CFS):      | 3,070                                 | Flow rate at time of end of Sampling (CFS): | 4,050        |  |  |  |
| Average flow rate (CFS):                   | 3,580                                 | Max flow rate for the event (CFS):          | 4,090        |  |  |  |
| Peak occurs during the<br>sampling time?   | No                                    |                                             |              |  |  |  |
| TSS (mg/L):                                | 440                                   | Turbidity (NTU):                            | 278          |  |  |  |
| Notes:                                     | Missing data                          |                                             |              |  |  |  |
| Feb 15, 2019 11:                           | :15:00 PM PST                         | - San                                       | npling Start |  |  |  |
| Feb 14 06:01 AM                            | Feb 14 06:01 PM                       | Feb 15 06:01 AM Feb 1                       | 15 06:01 PM  |  |  |  |

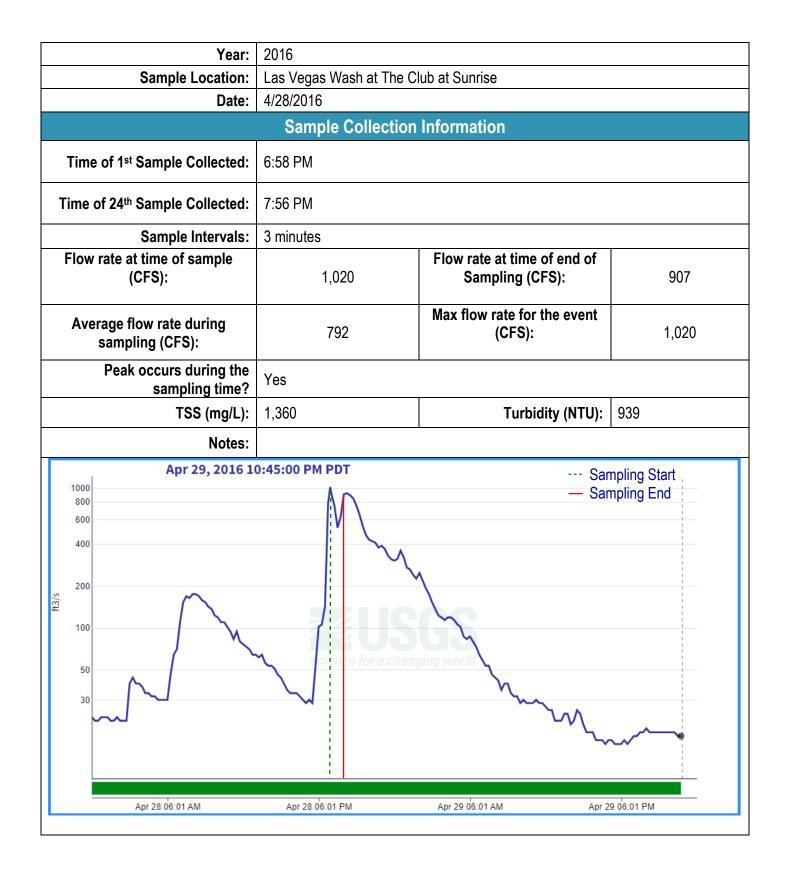

| Year:                                              | : 2019                        |                                             |                              |  |  |  |
|----------------------------------------------------|-------------------------------|---------------------------------------------|------------------------------|--|--|--|
| Sample Location:                                   | Las Vegas Wash at The         | Club at Sunrise                             |                              |  |  |  |
| Date:                                              | ate: 1/14/2019                |                                             |                              |  |  |  |
|                                                    | Sample Collection Information |                                             |                              |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected: 11:26 PM |                               |                                             |                              |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected:         | 11:53 PM                      |                                             |                              |  |  |  |
| Sample Intervals:                                  | 1 minute                      |                                             |                              |  |  |  |
| Flow rate at time of sample<br>(CFS):              | 1,480                         | Flow rate at time of end of Sampling (CFS): | 1,390                        |  |  |  |
| Average flow rate (CFS):                           | 1,435                         | Max flow rate for the event (CFS):          | 1,610                        |  |  |  |
| Peak occurs during the<br>sampling time?           |                               | -                                           |                              |  |  |  |
| TSS (mg/L):                                        | 455                           | Turbidity (NTU):                            | 328                          |  |  |  |
| Jan 15, 2019 1                                     | 1:45:00 PM PST                |                                             | 1                            |  |  |  |
| 1000<br>500<br>300<br>200<br>70                    |                               | GS                                          |                              |  |  |  |
|                                                    | M                             |                                             | ampling Start<br>ampling End |  |  |  |
| Jan 14 06:01 AM                                    | Jan 14 06:01 PM               | Jan 15 06:01 AM Jan 1                       | 5 06:01 PM                   |  |  |  |






| <b>Year:</b> 2017                          |                                       |                                             |                              |  |  |  |
|--------------------------------------------|---------------------------------------|---------------------------------------------|------------------------------|--|--|--|
| Sample Location:                           | Las Vegas Wash at The Club at Sunrise |                                             |                              |  |  |  |
| Date:                                      | ite: 7/25/2017                        |                                             |                              |  |  |  |
|                                            | Sample Collection Information         |                                             |                              |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected:  | 12:14 PM                              |                                             |                              |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected: | 1:23 PM                               |                                             |                              |  |  |  |
| Sample Intervals:                          | 3 minutes                             |                                             |                              |  |  |  |
| Flow rate at time of sample<br>(CFS):      | 348                                   | Flow rate at time of end of Sampling (CFS): | 266                          |  |  |  |
| Average flow rate during sampling (CFS):   | 294                                   | Max flow rate for the event (CFS):          | 348                          |  |  |  |
| Peak occurs during the<br>sampling time?   | Yes                                   |                                             |                              |  |  |  |
| TSS (mg/L):                                | 2,740                                 | Turbidity (NTU):                            | 2,190                        |  |  |  |
| Notes:                                     |                                       |                                             |                              |  |  |  |
| Jul 25, 2017 10:4                          | 5:00 PM PDT                           |                                             |                              |  |  |  |
| 300<br>200<br>100<br>50<br>30<br>14<br>8   |                                       | S                                           | ampling Start<br>ampling End |  |  |  |
| Jul 25 03:01 AM                            | Jul 25 09:01 AM                       | Jul 25 03:01 PM Jul 29                      | 5 09:01 PM                   |  |  |  |
|                                            |                                       |                                             |                              |  |  |  |

| Year:                                       | 2017                                  |                                             |                              |  |  |  |
|---------------------------------------------|---------------------------------------|---------------------------------------------|------------------------------|--|--|--|
| Sample Location:                            | Las Vegas Wash at The Club at Sunrise |                                             |                              |  |  |  |
| Date:                                       | 7/17/2017                             |                                             |                              |  |  |  |
|                                             | Sample Collection                     | Information                                 |                              |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected:   | 6:05 PM                               | 6:05 PM                                     |                              |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected:  | 7:14 PM                               |                                             |                              |  |  |  |
| Sample Intervals:                           | 3 minutes                             |                                             |                              |  |  |  |
| Flow rate at time of sample<br>(CFS):       | 170                                   | Flow rate at time of end of Sampling (CFS): | 181                          |  |  |  |
| Average flow rate during<br>sampling (CFS): | 205                                   | Max flow rate for the event (CFS):          | 233                          |  |  |  |
| Peak occurs during the<br>sampling time?    | Yes                                   |                                             |                              |  |  |  |
| TSS (mg/L):                                 | 444                                   | Turbidity (NTU):                            | 355                          |  |  |  |
| Notes:                                      |                                       |                                             |                              |  |  |  |
| Jul 18, 2017 10:                            | 45:00 PM PDT                          |                                             | ampling Start<br>ampling End |  |  |  |
| Jul 17 06:01 AM                             | Jul 17 06:01 PM                       | Jul 18 06:01 AM Jul 18                      | 8 06:01 PM                   |  |  |  |

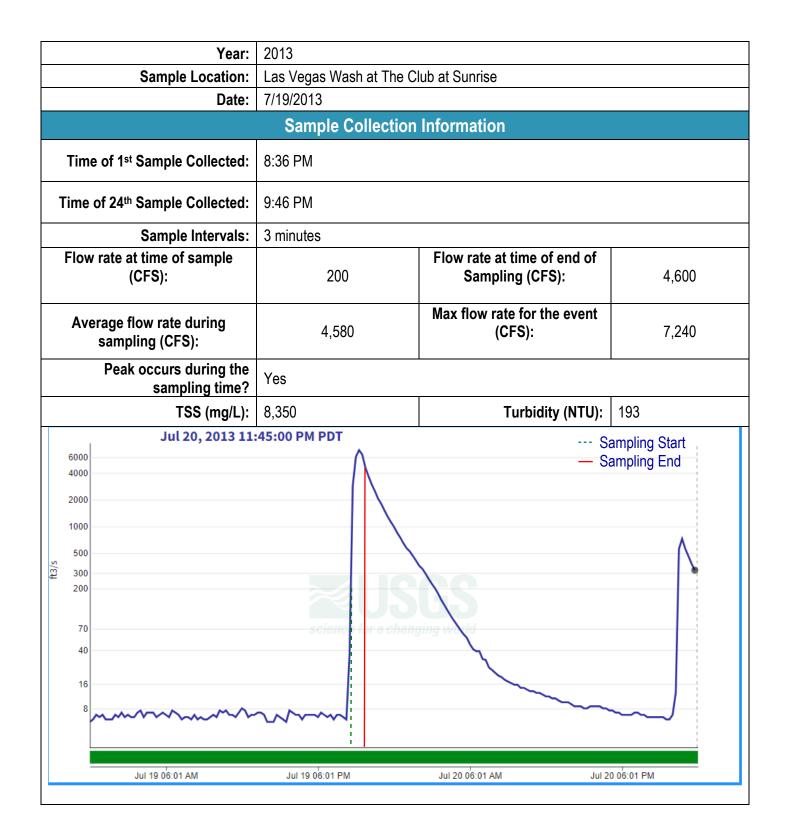


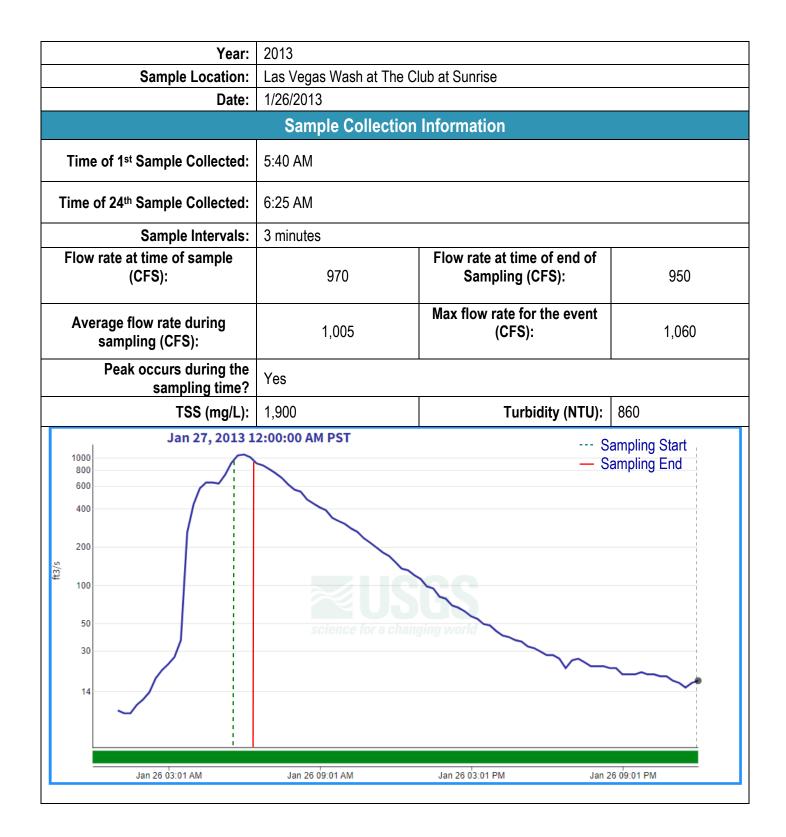


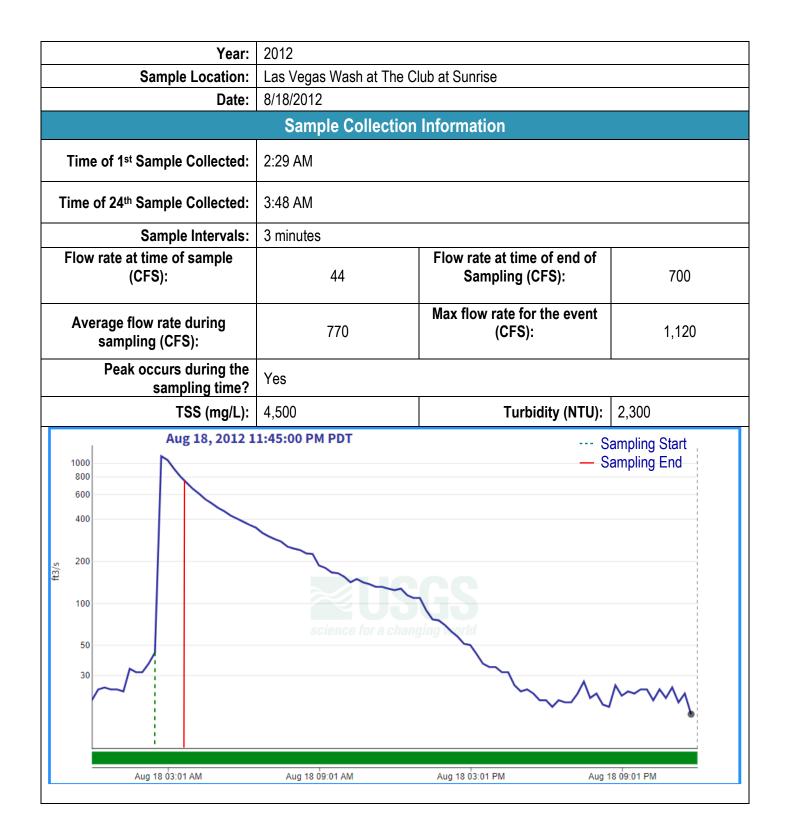

|       |                               | <b>Year:</b> 2016                   |                                       |                                             |                   |  |  |
|-------|-------------------------------|-------------------------------------|---------------------------------------|---------------------------------------------|-------------------|--|--|
|       |                               | Sample Location:                    | Las Vegas Wash at The Club at Sunrise |                                             |                   |  |  |
|       |                               | Date:                               | Date: 12/22/2016                      |                                             |                   |  |  |
|       | Sample Collection Information |                                     |                                       |                                             |                   |  |  |
|       | Time of '                     | 1st Sample Collected:               | 2:26 PM                               |                                             |                   |  |  |
| Т     | ime of 24                     | 4th Sample Collected:               | 3:55 PM                               |                                             |                   |  |  |
|       |                               | Sample Intervals:                   | 3 minutes                             |                                             |                   |  |  |
| ł     | Flow rate                     | e at time of sample<br>(CFS):       | 203                                   | Flow rate at time of end of Sampling (CFS): | 880               |  |  |
|       |                               | e flow rate during<br>npling (CFS): | 538                                   | Max flow rate for the event (CFS):          | 1,230             |  |  |
|       | Pe                            | ak occurs during the sampling time? | No                                    |                                             |                   |  |  |
|       | TSS (mg/L):                   |                                     | 310                                   | Turbidity (NTU):                            | 292               |  |  |
|       |                               | Notes:                              |                                       |                                             |                   |  |  |
|       | I                             | Dec 22, 2016 11                     | :45:00 PM PST                         |                                             | 1                 |  |  |
|       | 1000                          |                                     |                                       |                                             |                   |  |  |
|       | 800                           |                                     |                                       |                                             |                   |  |  |
|       | 600                           |                                     |                                       |                                             |                   |  |  |
|       | 400                           |                                     |                                       |                                             | $\searrow$        |  |  |
| s     | 200                           |                                     |                                       |                                             | ~                 |  |  |
| ft3/s | 200                           |                                     |                                       |                                             | •                 |  |  |
|       | 100                           |                                     | ~~~~                                  |                                             |                   |  |  |
|       |                               |                                     | science for a char                    | ing world                                   |                   |  |  |
| 50    |                               |                                     |                                       |                                             |                   |  |  |
|       |                               |                                     |                                       |                                             |                   |  |  |
|       |                               |                                     |                                       |                                             |                   |  |  |
|       |                               |                                     |                                       |                                             | ampling Start     |  |  |
|       |                               |                                     |                                       | — S                                         | ampling End       |  |  |
|       |                               | Dec 22 03:01 AM                     | Dec 22 09:01 AM                       | Dec 22 03:01 PM Dec 2                       | 22 09:01 PM       |  |  |
|       |                               |                                     |                                       |                                             | • • • • • • • • • |  |  |

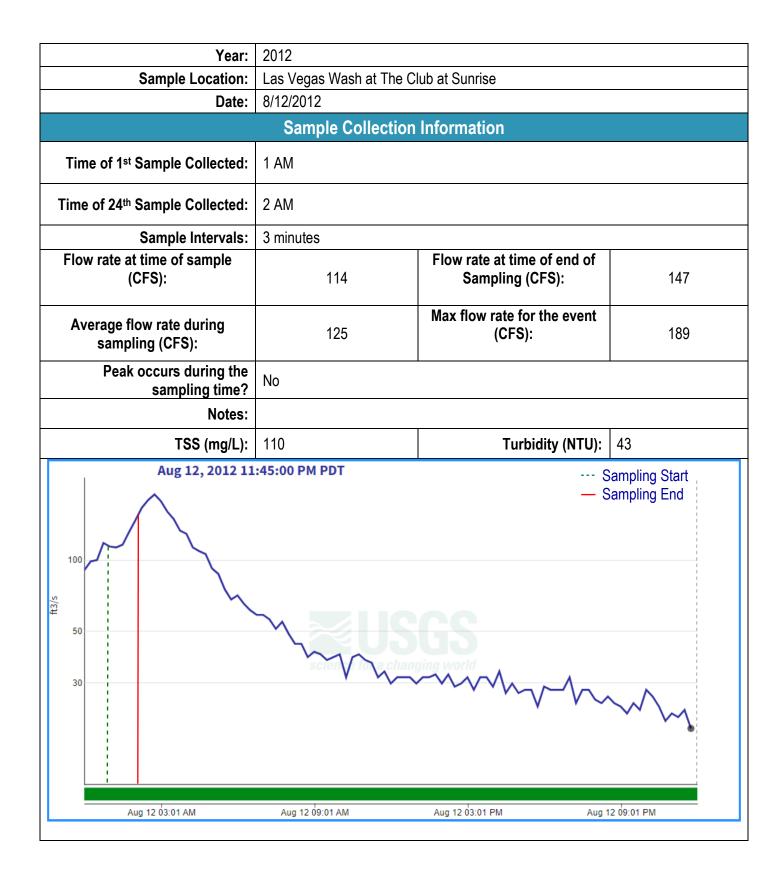
| Year:                                      | Year: 2016                            |                                                |                              |  |
|--------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------|--|
| Sample Location:                           | Las Vegas Wash at The Club at Sunrise |                                                |                              |  |
| Date:                                      | 8/22/2016                             |                                                |                              |  |
| Sample Collection Information              |                                       |                                                |                              |  |
| Time of 1 <sup>st</sup> Sample Collected:  | 9:07 PM                               |                                                |                              |  |
| Time of 24 <sup>th</sup> Sample Collected: | 10:17 PM                              |                                                |                              |  |
| Sample Intervals:                          | 3 minutes                             |                                                |                              |  |
| Flow rate at time of sample<br>(CFS):      | 720                                   | Flow rate at time of end of<br>Sampling (CFS): | 2,910                        |  |
| Average flow rate during sampling (CFS):   | 5,106                                 | Max flow rate for the event (CFS):             | 7,450                        |  |
| Peak occurs during the<br>sampling time?   | Yes                                   |                                                |                              |  |
| TSS (mg/L):                                | 4,340                                 | Turbidity (NTU):                               | 401                          |  |
| Notes:                                     |                                       |                                                |                              |  |
| Aug 23, 2016 1                             | 0:45:00 PM PDT                        | – Sa                                           | ampling Start<br>ampling End |  |
| Aug 22 06:01 AM                            | Aug 22 06:01 PM                       | Aug 23 06:01 AM Aug 2                          | 3 06:01 PM                   |  |

| <b>Year:</b> 2016                          |                                       |                                             |               |  |  |
|--------------------------------------------|---------------------------------------|---------------------------------------------|---------------|--|--|
| Sample Location:                           | Las Vegas Wash at The Club at Sunrise |                                             |               |  |  |
| Date:                                      | Date: 5/6/2016                        |                                             |               |  |  |
|                                            | Sample Collection Information         |                                             |               |  |  |
| Time of 1 <sup>st</sup> Sample Collected:  | 12:35 PM                              |                                             |               |  |  |
| Time of 24 <sup>th</sup> Sample Collected: | 1:45 PM                               |                                             |               |  |  |
| Sample Intervals:                          | 3 minutes                             |                                             |               |  |  |
| Flow rate at time of sample<br>(CFS):      | 253                                   | Flow rate at time of end of Sampling (CFS): | 321           |  |  |
| Average flow rate during sampling (CFS):   | 281                                   | Max flow rate for the event (CFS):          | 321           |  |  |
| Peak occurs during the<br>sampling time?   | Yes                                   |                                             |               |  |  |
| TSS (mg/L):                                | 410                                   | Turbidity (NTU):                            | 628           |  |  |
| Notes:                                     |                                       |                                             |               |  |  |
| May 06, 2016 10                            | :45:00 PM PDT                         | Sa                                          | ampling Start |  |  |
| 300                                        |                                       |                                             | ampling End   |  |  |
| 200                                        |                                       |                                             |               |  |  |
| science for changin world                  |                                       |                                             |               |  |  |
| May 06 03:01 AM                            | May 06 09:01 AM                       | May 06 03:01 PM May 0                       | 06 09:01 PM   |  |  |
| Way 00 03.01 Alvi                          | way 00 03.01 AW                       | way oo oo.orrinn Mady u                     | 000.011 M     |  |  |



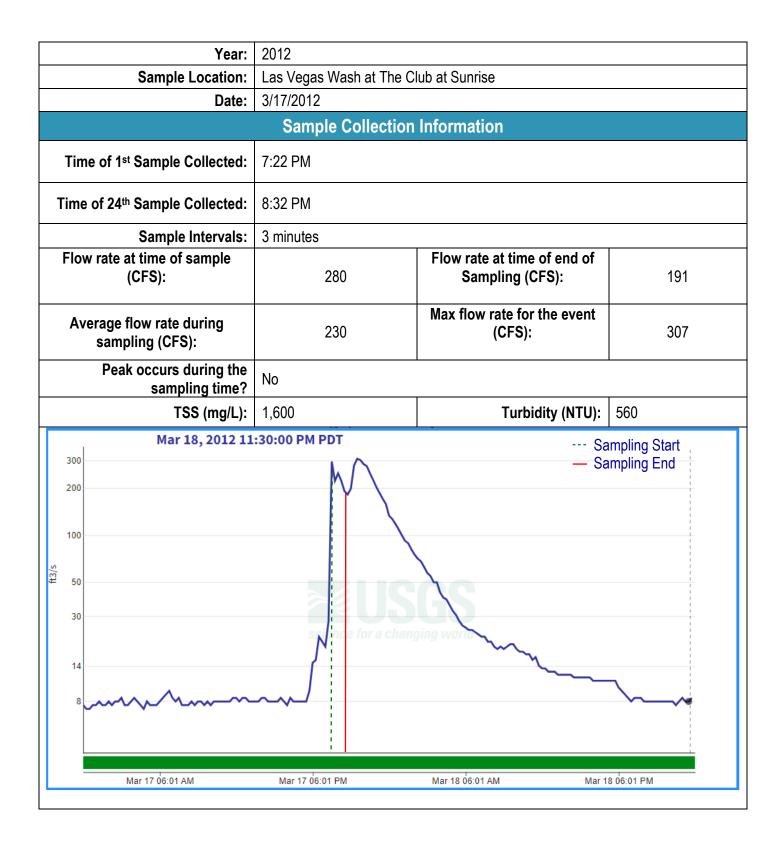


|                                                           | Year: 2016                               |                                       |                                             |                          |  |  |  |
|-----------------------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------|--|--|--|
|                                                           | Sample Location:                         | Las Vegas Wash at The Club at Sunrise |                                             |                          |  |  |  |
|                                                           | Date:                                    | 4/9/2016                              | 4/9/2016                                    |                          |  |  |  |
| Sample Collection Information                             |                                          |                                       |                                             |                          |  |  |  |
| Time                                                      | of 1 <sup>st</sup> Sample Collected:     | 2:12 PM                               |                                             |                          |  |  |  |
| Time                                                      | of 24th Sample Collected:                | 3:22 PM                               |                                             |                          |  |  |  |
|                                                           | Sample Intervals:                        | 3 minutes                             |                                             |                          |  |  |  |
| Flow                                                      | rate at time of sample<br>(CFS):         | 5,580                                 | Flow rate at time of end of Sampling (CFS): | 4,220                    |  |  |  |
| Ave                                                       | rage flow rate during<br>sampling (CFS): | 7,862                                 | Max flow rate for the event (CFS):          | 11,000                   |  |  |  |
|                                                           | Peak occurs during the<br>sampling time? | Yes                                   |                                             |                          |  |  |  |
|                                                           | TSS (mg/L):                              | 850                                   | Turbidity (NTU):                            | 1,152                    |  |  |  |
|                                                           | Notes:                                   |                                       |                                             |                          |  |  |  |
| 8000 -<br>4000 -<br>1000 -<br>55<br>300 -<br>70 -<br>16 - | Apr 09, 2016 10                          | :45:00 PM PDT                         | _ Sam                                       | pling Start<br>pling End |  |  |  |
| -                                                         | Apr 09 03:01 AM                          | Apr 09 09:01 AM                       | Apr 09 03:01 PM Apr 0                       | 9 09:01 PM               |  |  |  |
|                                                           |                                          |                                       |                                             |                          |  |  |  |


|     |                                             | Year:                                    | 2015                                  |                                             |                              |  |
|-----|---------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------------|------------------------------|--|
|     |                                             | Sample Location:                         | Las Vegas Wash at The Club at Sunrise |                                             |                              |  |
|     |                                             | Date:                                    | 10/05/15                              |                                             |                              |  |
|     |                                             |                                          | Sample Collection                     | on Information                              |                              |  |
| Т   | ime o                                       | of 1 <sup>st</sup> Sample Collected:     | 9:53 AM                               |                                             |                              |  |
| Tir | Time of 24th Sample Collected:              |                                          | 11:46 AM                              |                                             |                              |  |
|     |                                             | Sample Intervals:                        | 3 Minutes                             |                                             |                              |  |
| F   | low ra                                      | ate at time of sample<br>(CFS):          | 320                                   | Flow rate at time of end of Sampling (CFS): | 770                          |  |
|     | Average flow rate during sampling (CFS):    |                                          | 595                                   | Max flow rate for the event (CFS):          | 885                          |  |
|     | F                                           | Peak occurs during the<br>sampling time? | Yes                                   | _                                           |                              |  |
|     |                                             | TSS (mg/L):                              | 7,450                                 | Turbidity (NTU):                            | 485                          |  |
| S   | 1000<br>500<br>300<br>200<br>70<br>40<br>16 | Oct 05, 2015 1                           | 1:45:00 PM PDT                        | S                                           | ampling Start<br>ampling End |  |
|     |                                             | Oct 05 03:01 AM                          | Oct 05 09:01 AM                       | Oct 05 03:01 PM Oct                         | 05 09:01 PM                  |  |
|     |                                             |                                          |                                       |                                             |                              |  |


|   |                                | Year:                                    | 2013                  |                                                |                                |
|---|--------------------------------|------------------------------------------|-----------------------|------------------------------------------------|--------------------------------|
|   |                                | Sample Location:                         | Las Vegas Wash at The | e Club at Sunrise                              |                                |
|   |                                | Date:                                    | 8/25/2013             |                                                |                                |
|   |                                |                                          | Sample Collection     | on Information                                 |                                |
| 1 | Time                           | of 1 <sup>st</sup> Sample Collected:     | 8:03 PM               |                                                |                                |
| Т | Time of 24th Sample Collected: |                                          | 9:12 PM               |                                                |                                |
|   |                                | Sample Intervals:                        | 3 minutes             |                                                |                                |
|   | Flow                           | rate at time of sample<br>(CFS):         | 1,550                 | Flow rate at time of end of<br>Sampling (CFS): | 2,590                          |
|   |                                | rage flow rate during<br>sampling (CFS): | 2,510                 | Max flow rate for the event (CFS):             | 2,830                          |
|   |                                | Peak occurs during the<br>sampling time? | Yes                   |                                                |                                |
|   |                                | TSS (mg/L):                              | 4,090                 | Turbidity (NTU):                               | 368                            |
|   | 3000                           | Aug 26, 2013 11                          | :45:00 PM PDT         |                                                |                                |
|   | 2000<br>500<br>200<br>40       |                                          | scien e for a ch      | SGS<br>anging world                            | ~                              |
|   | 8                              |                                          | ~~~~                  |                                                | Sampling Start<br>Sampling End |
|   |                                | Aug 25 06:01 AM                          | Aug 25 06:01 PM       | Aug 26 06:01 AM Aug                            | 26 06:01 PM                    |

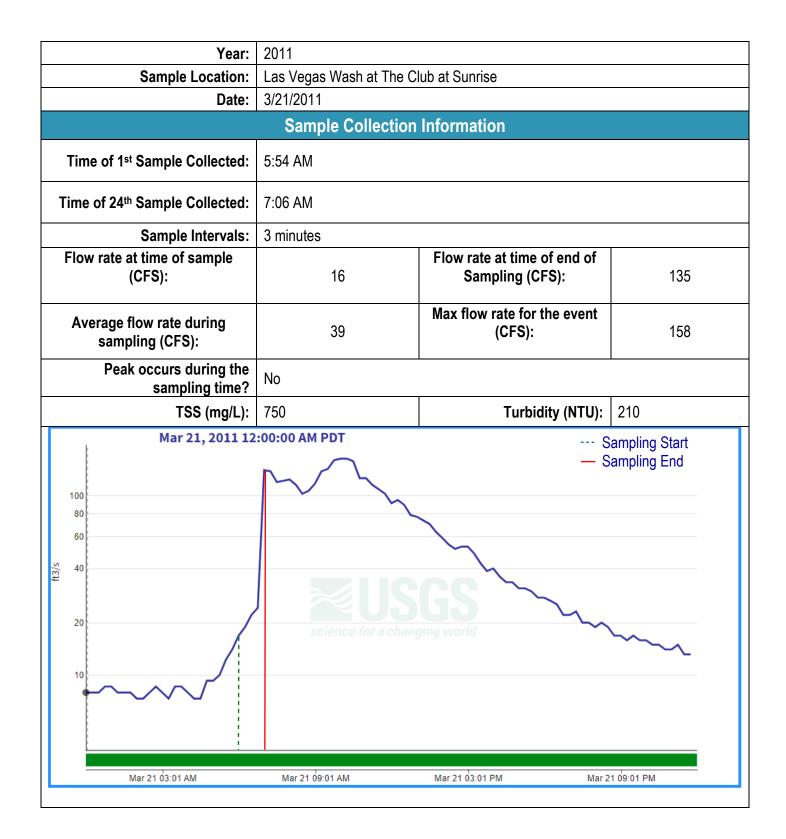
| Year:                                                                                 | 2013                                  | ub at Querica                               |                              |
|---------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|------------------------------|
| Sample Location:<br>Date:                                                             | Las Vegas Wash at The Cl<br>8/18/2013 | ud at Sunnse                                |                              |
| Date.                                                                                 |                                       | 1.6.0                                       |                              |
|                                                                                       | Sample Collection                     | Information                                 |                              |
| Time of 1 <sup>st</sup> Sample Collected:                                             | 7:15 PM                               |                                             |                              |
| Time of 24 <sup>th</sup> Sample Collected:                                            | 8:15 PM                               |                                             |                              |
| Sample Intervals:                                                                     | 3 minutes                             |                                             |                              |
| Flow rate at time of sample<br>(CFS):                                                 | 1,010                                 | Flow rate at time of end of Sampling (CFS): | 627                          |
| Average flow rate during sampling (CFS):                                              | 845                                   | Max flow rate for the event (CFS):          | 1,030                        |
| Peak occurs during the<br>sampling time?                                              | Yes                                   |                                             |                              |
| TSS (mg/L):                                                                           | 1,840                                 | Turbidity (NTU):                            | 790                          |
| Aug 19, 2013 1:<br>1000<br>800<br>600<br>400<br>200<br>200<br>50<br>30<br>14<br>8<br> | 1:45:00 PM PDT                        |                                             | ampling Start<br>ampling End |
| Aug 18 06:01 AM                                                                       | Aug 18 06:01 PM                       | Aug 19 06:01 AM Aug 1                       | 19 06:01 PM                  |
|                                                                                       |                                       |                                             |                              |

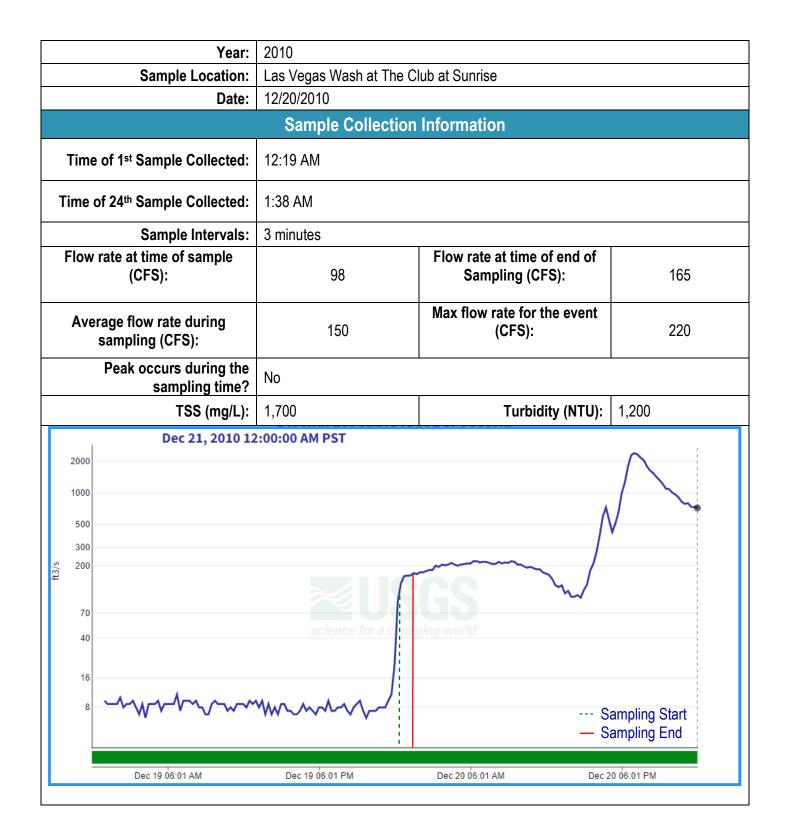




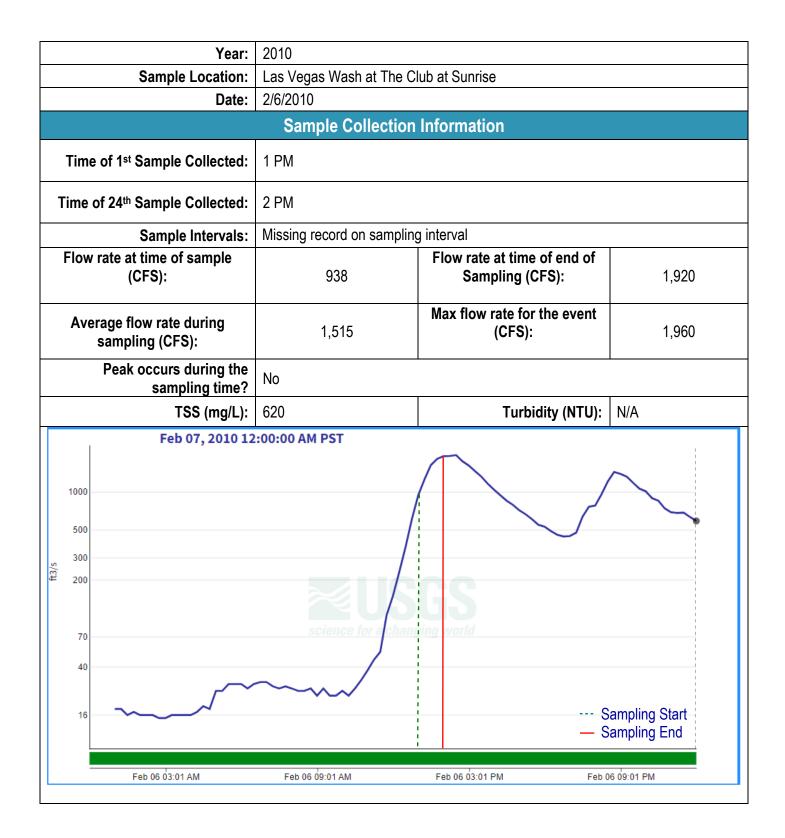






| Year:                                      | 2012                    |                                             |                              |
|--------------------------------------------|-------------------------|---------------------------------------------|------------------------------|
| Sample Location:                           | Las Vegas Wash at The C | lub at Sunrise                              |                              |
| Date:                                      | 7/31/2012               |                                             |                              |
|                                            | Sample Collection       | Information                                 |                              |
| Time of 1 <sup>st</sup> Sample Collected:  | 3:56 PM                 |                                             |                              |
| Time of 24 <sup>th</sup> Sample Collected: | 4:52 PM                 |                                             |                              |
| Sample Intervals:                          | 3 minutes               |                                             |                              |
| Flow rate at time of sample<br>(CFS):      | 118                     | Flow rate at time of end of Sampling (CFS): | 108                          |
| Average flow rate during sampling (CFS):   | 112                     | Max flow rate for the event (CFS):          | 131                          |
| Peak occurs during the<br>sampling time?   | No                      |                                             |                              |
| TSS (mg/L):                                | 1,400                   | Turbidity (NTU):                            | 780                          |
| Jul 31, 2012 11:                           | 45:00 PM PDT            | - Se                                        | ampling Start<br>ampling End |
| Jul 31 03:01 AM                            | Jul 31 09:01 AM         | Jul 31 03:01 PM Jul 31                      | 1 09:01 PM                   |


|       |                                                 | Year:                                    | 2012                  |                                             |                                |
|-------|-------------------------------------------------|------------------------------------------|-----------------------|---------------------------------------------|--------------------------------|
|       |                                                 | Sample Location:                         | Las Vegas Wash at The | e Club at Sunrise                           |                                |
|       |                                                 | Date:                                    | 7/23/2012             |                                             |                                |
|       |                                                 |                                          | Sample Collection     | on Information                              |                                |
|       | Tim                                             | ne of 1 <sup>st</sup> Sample Collected:  | 4:26 PM               |                                             |                                |
| ٦     | Time                                            | e of 24 <sup>th</sup> Sample Collected:  | 5:30 PM               |                                             |                                |
|       |                                                 | Sample Intervals:                        | 3 minutes             |                                             |                                |
|       | Flov                                            | w rate at time of sample<br>(CFS):       | 385                   | Flow rate at time of end of Sampling (CFS): | 359                            |
|       | Av                                              | verage flow rate during sampling (CFS):  | 388                   | Max flow rate for the event<br>(CFS):       | t 423                          |
|       |                                                 | Peak occurs during the<br>sampling time? | Yes                   |                                             |                                |
|       |                                                 | TSS (mg/L):                              | 970                   | Turbidity (NTU                              | ): 700                         |
| ft3/s | 400<br>300<br>200<br>100<br>50<br>30<br>14<br>8 | Jul 23, 2012 11:                         | 45:00 PM PD1          | SGS                                         | Sampling Start<br>Sampling End |
|       |                                                 | Jul 23 03:01 AM                          | Jul 23 09:01 AM       | Jul 23 03:01 PM Ju                          | ul 23 09:01 PM                 |




|       |                                                                      | Year:                               | 2011                    |                                             |                              |  |
|-------|----------------------------------------------------------------------|-------------------------------------|-------------------------|---------------------------------------------|------------------------------|--|
|       |                                                                      | Sample Location:                    | Las Vegas Wash at The C | Club at Sunrise                             |                              |  |
|       |                                                                      | Date:                               | 10/3/2011               |                                             |                              |  |
|       |                                                                      |                                     | Sample Collection       | Information                                 |                              |  |
|       | Time of 1 <sup>st</sup>                                              | Sample Collected:                   | 3:45 PM                 |                                             |                              |  |
| T     | Time of 24 <sup>th</sup> S                                           | Sample Collected:                   | 4:55 PM                 |                                             |                              |  |
|       |                                                                      | Sample Intervals:                   | 3 minutes               |                                             |                              |  |
|       |                                                                      | time of sample<br>CFS):             | 118                     | Flow rate at time of end of Sampling (CFS): | 870                          |  |
|       |                                                                      | ow rate during<br>ing (CFS):        | 560                     | Max flow rate for the event (CFS):          | 2,910                        |  |
|       | Peak                                                                 | occurs during the<br>sampling time? | No                      | -                                           |                              |  |
|       |                                                                      | TSS (mg/L):                         | 4,700                   | Turbidity (NTU):                            | 1,100                        |  |
| ft3/s | 2000<br>1000<br>500<br>300<br>200<br>70<br>40<br>16<br>8<br><b>2</b> | Oct 03, 2011 11                     | :45:00 PM PDT           | ~~~~ S                                      | ampling Start<br>ampling End |  |
|       | C                                                                    | Det 03 03:01 AM                     | Oct 03 09:01 AM         | Oct 03 03:01 PM Oct (                       | 03 09:01 PM                  |  |

|       | Y                                        | ear:      | 2011                    |                                                |               |
|-------|------------------------------------------|-----------|-------------------------|------------------------------------------------|---------------|
|       | Sample Loca                              | tion:     | Las Vegas Wash at The C | Club at Sunrise                                |               |
|       | Γ                                        | Date:     | 9/11/2011               |                                                |               |
|       |                                          |           | Sample Collection       | n Information                                  |               |
| 1     | Time of 1st Sample Collec                | cted:     | 4:29 PM                 |                                                |               |
| Т     | Time of 24th Sample Collected:           |           | 5:39 PM                 |                                                |               |
|       | Sample Interv                            | vals:     | 3 minutes               |                                                |               |
|       | Flow rate at time of samp<br>(CFS):      | le        | 560                     | Flow rate at time of end of<br>Sampling (CFS): | 1,280         |
|       | Average flow rate during sampling (CFS): | 9         | 1,335                   | Max flow rate for the event (CFS):             | 2,230         |
|       | Peak occurs during<br>sampling ti        |           | Yes                     |                                                |               |
|       | TSS (m                                   | g/L):     | 7,600                   | Turbidity (NTU):                               | 5,200         |
| ft3/s | Sep 11, 2 2000 1000 500 300 200 70 40 16 | <i>∧∧</i> | 1:45:00 PM PDT          | GS<br>Iging world                              | ampling Start |
|       | Sep 11 03:01 AM                          |           | Sep 11 09:01 AM         | Sep 11 03:01 PM Sep 1                          | 1 09:01 PM    |



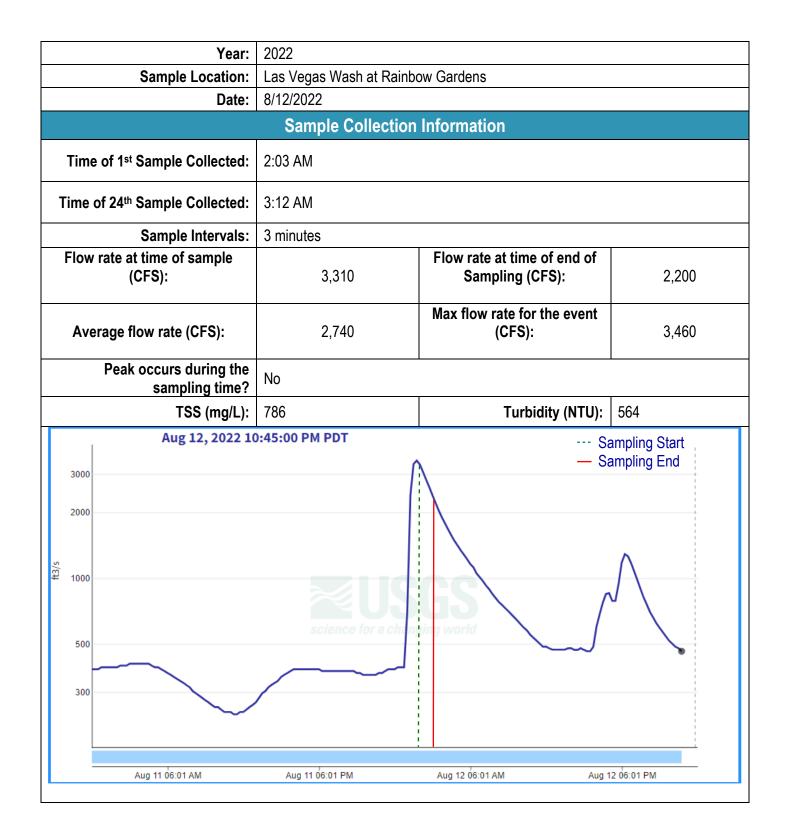


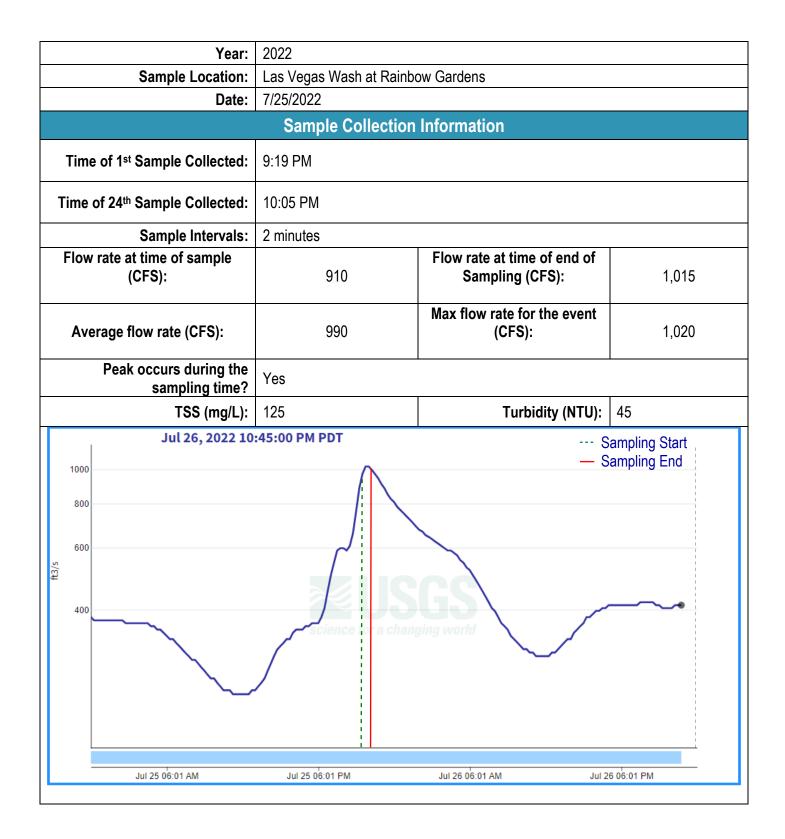
| Year:                                      | 2010                    |                                             |                                |
|--------------------------------------------|-------------------------|---------------------------------------------|--------------------------------|
| Sample Location:                           | Las Vegas Wash at The C | ub at Sunrise                               |                                |
| Date:                                      | 10/17/2010              |                                             |                                |
|                                            | Sample Collection       | Information                                 |                                |
| Time of 1 <sup>st</sup> Sample Collected:  | 8:32 PM                 |                                             |                                |
| Time of 24 <sup>th</sup> Sample Collected: | 9:41 PM                 |                                             |                                |
| Sample Intervals:                          | 3 minutes               |                                             |                                |
| Flow rate at time of sample<br>(CFS):      | 81.8                    | Flow rate at time of end of Sampling (CFS): | 105                            |
| Average flow rate during sampling (CFS):   | 115                     | Max flow rate for the event (CFS):          | 146                            |
| Peak occurs during the<br>sampling time?   | Yes                     |                                             |                                |
| TSS (mg/L):                                | 230                     | Turbidity (NTU):                            | 28                             |
| Oct 17, 2010 12:                           |                         |                                             | Sampling Start<br>Sampling End |
| Oct 17 06:01 AM                            | Oct 17 06:01 PM         | Oct 18 06:01 AM Oct 1                       | 8 06:01 PM                     |
|                                            |                         |                                             |                                |

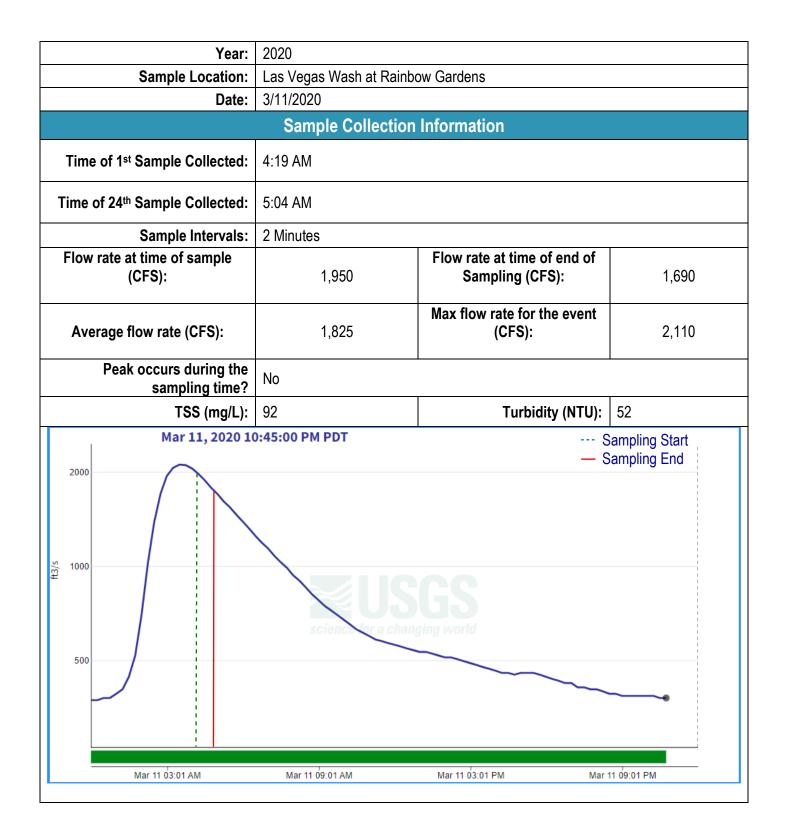


|                                   | Year:                                        | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                              |
|-----------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|
| Sample Location:                  |                                              | Las Vegas Wash at The C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Club at Sunrise                             |                              |
|                                   | Date:                                        | 1/19/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                              |
|                                   |                                              | Sample Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Information                                 |                              |
| Tir                               | me of 1 <sup>st</sup> Sample Collected:      | 5:40 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                              |
| Tim                               | e of 24 <sup>th</sup> Sample Collected:      | 6:20 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                              |
|                                   | Sample Intervals:                            | 3 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                              |
| Flo                               | ow rate at time of sample<br>(CFS):          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow rate at time of end of Sampling (CFS): | 310                          |
| A                                 | verage flow rate during<br>sampling (CFS):   | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max flow rate for the event (CFS):          | 2,310                        |
|                                   | Peak occurs during the<br>sampling time?     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                           |                              |
|                                   | TSS (mg/L):                                  | 3,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Turbidity (NTU):                            | N/A                          |
|                                   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                              |
|                                   | Jan 19, 2010 11                              | :45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Si                                          | ampling Start                |
| 200<br>100<br>51                  | 00                                           | :45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | ampling Start<br>ampling End |
| 10<br>5<br>5/5                    | 00                                           | ::45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                              |
| 10)<br>5)<br>2<br>2<br>2<br>2     | 00 00 00 00                                  | :45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | – s                                         |                              |
| 104<br>54<br>55<br>24<br>24<br>24 |                                              | IN SECTION OF SECTION | – s                                         |                              |
| 101<br>51<br>21<br>21             | 00<br>00<br>00<br>00<br>70                   | IN SECTION OF SECTION | – s                                         |                              |
| 101<br>51<br>21<br>21             | 00<br>00<br>00<br>00<br>00<br>00<br>70<br>40 | IN SECTION OF SECTION | - Si                                        |                              |

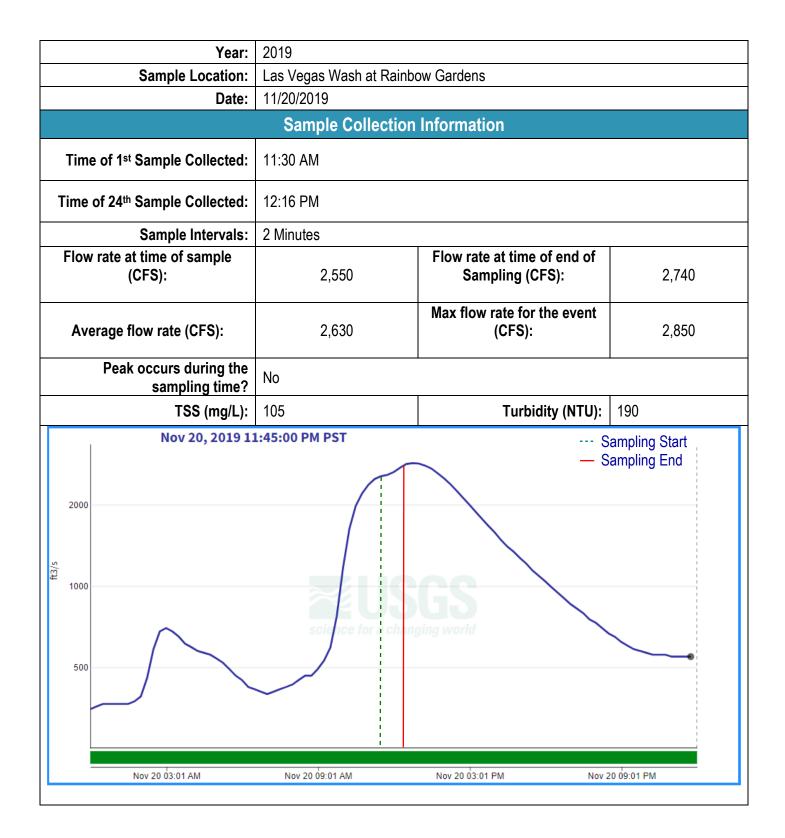
## **Rainbow Gardens Hydrographs**



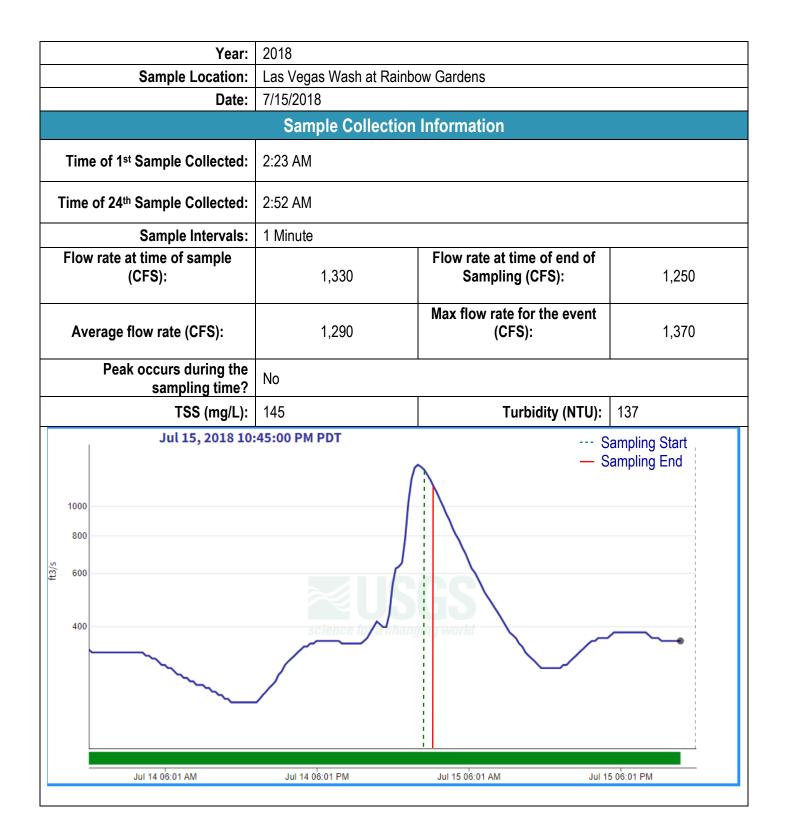


DRAFT for review purposes only. Use of contents on this sheet is subject to the limitations specified at the end of this document. Wet Weather Sampling Hydrographs

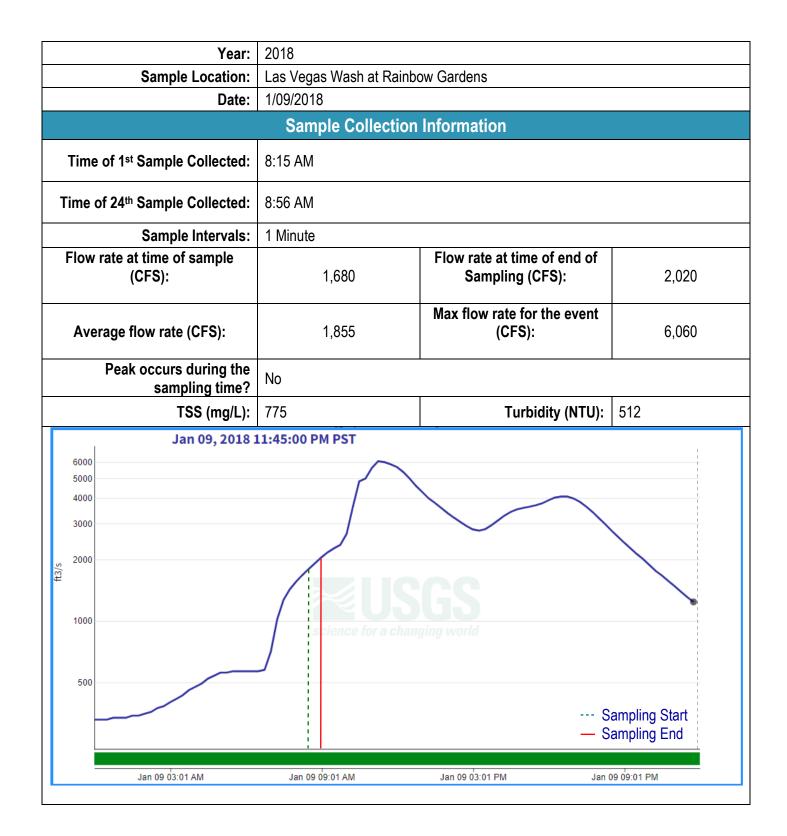

40

| Year: 2023                                                                           |                                          |                      |                                             |                              |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------|----------------------|---------------------------------------------|------------------------------|--|--|
|                                                                                      | Sample Location:                         | Las Vegas Wash at Ra | inbow Gardens                               |                              |  |  |
|                                                                                      | Date:                                    | 9/1/2023             |                                             |                              |  |  |
|                                                                                      | Sample Collection Information            |                      |                                             |                              |  |  |
| Ti                                                                                   | me of 1 <sup>st</sup> Sample Collected:  | 12:27 PM             |                                             |                              |  |  |
| Tim                                                                                  | ne of 24 <sup>th</sup> Sample Collected: | 1:10 PM              |                                             |                              |  |  |
|                                                                                      | Sample Intervals:                        | 2 minutes            |                                             |                              |  |  |
| Flow rate at time of sample<br>(CFS):<br>Average flow rate during<br>sampling (CFS): |                                          | 2,660                | Flow rate at time of end of Sampling (CFS): | 2,120                        |  |  |
|                                                                                      |                                          | 2,380                | Max flow rate for the event (CFS):          | 4,770                        |  |  |
|                                                                                      | Peak occurs during the<br>sampling time? | No                   |                                             | -                            |  |  |
|                                                                                      | TSS (mg/L):                              | 680                  | Turbidity (NTU):                            | 581                          |  |  |
|                                                                                      | Sep 01, 2023 1                           | 1:45:00 PM PDT       |                                             |                              |  |  |
| 80                                                                                   | 000                                      |                      |                                             | $\frown$                     |  |  |
| 60                                                                                   | 000                                      |                      |                                             |                              |  |  |
| 13/s<br>ft3/s                                                                        | 000<br>000                               | scier ce for a c     | ang ng world                                |                              |  |  |
| 5                                                                                    | 500                                      |                      |                                             |                              |  |  |
| 3                                                                                    | 300                                      |                      |                                             | ampling Start<br>ampling End |  |  |
|                                                                                      | Sep 01 03:01 AM                          | Sep 01 09:01 AM      | Sep 01 03:01 PM Sep 1                       | 01 09:01 PM                  |  |  |

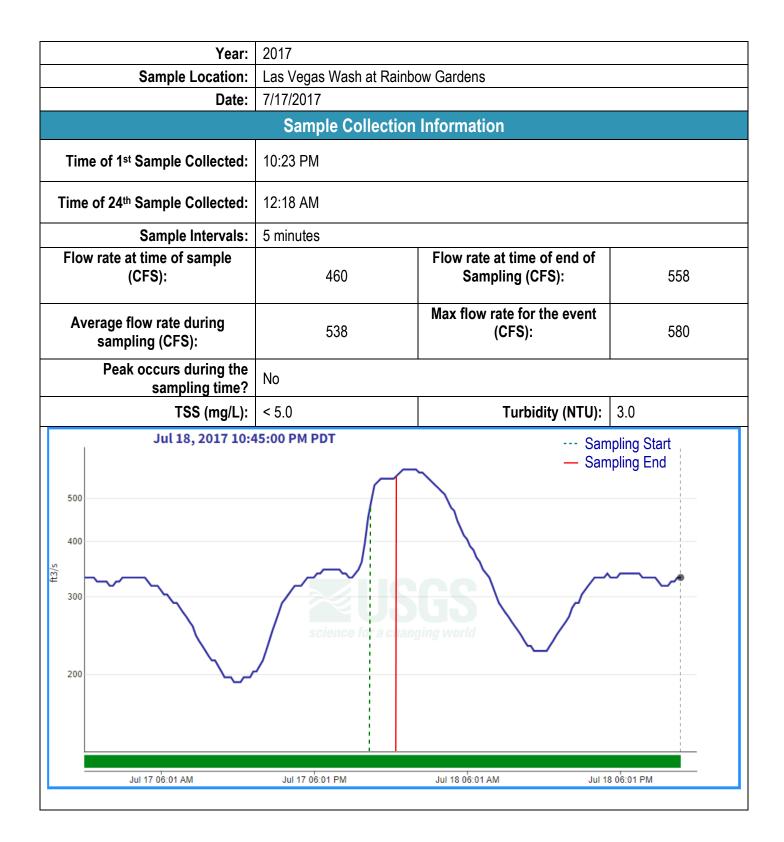

| Sample Location:       Las Vegas Wash at Rainbow Gardens         Date:       6/16/2023         Sample Collected:       1:28 PM         Time of 1 <sup>st</sup> Sample Collected:       2:43 PM         Sample Intervals:       3 minutes         Flow rate at time of sample<br>(CFS):       1,770         Flow rate at time of sample<br>(CFS):       1,770         Average flow rate (CFS):       1,572         Max flow rate for the event<br>sampling time?       1,890         Peak occurs during the<br>sampling time?       No         TSS (mg/L):       268       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Year:                                                        | 2023                    | Year: 2023            |             |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|-----------------------|-------------|--|--|--|--|
| Sample Collection Information         Time of 1st Sample Collected:       1:28 PM         Time of 24th Sample Collected:       2:43 PM         Sample Intervals:       3 minutes         Flow rate at time of sample (CFS):       1,770         Flow rate at time of sample (CFS):       1,770         Average flow rate (CFS):       1,572         Max flow rate for the event sampling time?       1,890         Peak occurs during the sampling time?       No         TSS (mg/L):       268       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Location:                                             | Las Vegas Wash at Rainb | ow Gardens            |             |  |  |  |  |
| Time of 1st Sample Collected:       1:28 PM         Time of 24th Sample Collected:       2:43 PM         Sample Intervals:       3 minutes         Flow rate at time of sample<br>(CFS):       1,770         Average flow rate (CFS):       1,572         Max flow rate for the event<br>(CFS):       1,890         Peak occurs during the<br>sampling time?       No         TSS (mg/L):       268       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date:                                                        | 6/16/2023               |                       |             |  |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected:       2:43 PM         Sample Intervals:       3 minutes         Flow rate at time of sample<br>(CFS):       1,770         Flow rate at time of end of<br>Sampling (CFS):       1,390         Average flow rate (CFS):       1,572         Max flow rate for the event<br>(CFS):       1,890         Peak occurs during the<br>sampling time?       No         TSS (mg/L):       268       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Collection Information                                |                         |                       |             |  |  |  |  |
| Sample Intervals:       3 minutes         Flow rate at time of sample<br>(CFS):       1,770       Flow rate at time of end of<br>Sampling (CFS):       1,390         Average flow rate (CFS):       1,572       Max flow rate for the event<br>(CFS):       1,890         Peak occurs during the<br>sampling time?       No       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time of 1 <sup>st</sup> Sample Collected:                    | 1:28 PM                 |                       |             |  |  |  |  |
| Flow rate at time of sample<br>(CFS):       1,770       Flow rate at time of end of<br>Sampling (CFS):       1,390         Average flow rate (CFS):       1,572       Max flow rate for the event<br>(CFS):       1,890         Peak occurs during the<br>sampling time?       No       1,890         TSS (mg/L):       268       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT       Sampling Start<br>Sampling End         1000       Science of Sampling ig word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time of 24 <sup>th</sup> Sample Collected:                   | 2:43 PM                 |                       |             |  |  |  |  |
| (CFS):       1,770       Sampling (CFS):       1,390         Average flow rate (CFS):       1,572       Max flow rate for the event (CFS):       1,890         Peak occurs during the sampling time?       No       Image: CFS):       1,890         TSS (mg/L):       268       Turbidity (NTU):       202         Jun 16, 2023 10:45:00 PM PDT       Image: Sampling End       Image: Sampling End         Image: Sampling End       Sampling End       Image: Sampling End         Image: Sampling End       Image: Sampling End       Image: Sampling End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Intervals:                                            | 3 minutes               |                       |             |  |  |  |  |
| Average flow rate (CFS):       1,572       (CFS):       1,890         Peak occurs during the sampling time?       No       Image: Sampling time?       Image: Sampling time? <thimage: sampling="" th="" time?<="">       Image: Sa</thimage:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | 1,770                   |                       | 1,390       |  |  |  |  |
| sampling time?     INU       TSS (mg/L):     268     Turbidity (NTU):     202       Jun 16, 2023 10:45:00 PM PDT     Sampling Start       Sampling End       9     1000       800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average flow rate (CFS):                                     | 1,572                   |                       | 1,890       |  |  |  |  |
| Jun 16, 2023 10:45:00 PM PDT<br>Sampling Start<br>Sampling End<br>Sampling End<br>Science Company of the science of the scie |                                                              | No                      | 1                     | 1           |  |  |  |  |
| Sampling End<br>→ Sampling End<br>800<br>Science I angi g word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TSS (mg/L):         268         Turbidity (NTU):         202 |                         |                       |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vr 1000<br>800                                               | science for an          | - s                   |             |  |  |  |  |
| Jun 16 03:01 AM Jun 16 09:01 AM Jun 16 03:01 PM Jun 16 09:01 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jun 16 03:01 AM                                              | Jun 16 09:01 AM         | Jun 16 03:01 PM Jun 1 | 16 09:01 PM |  |  |  |  |



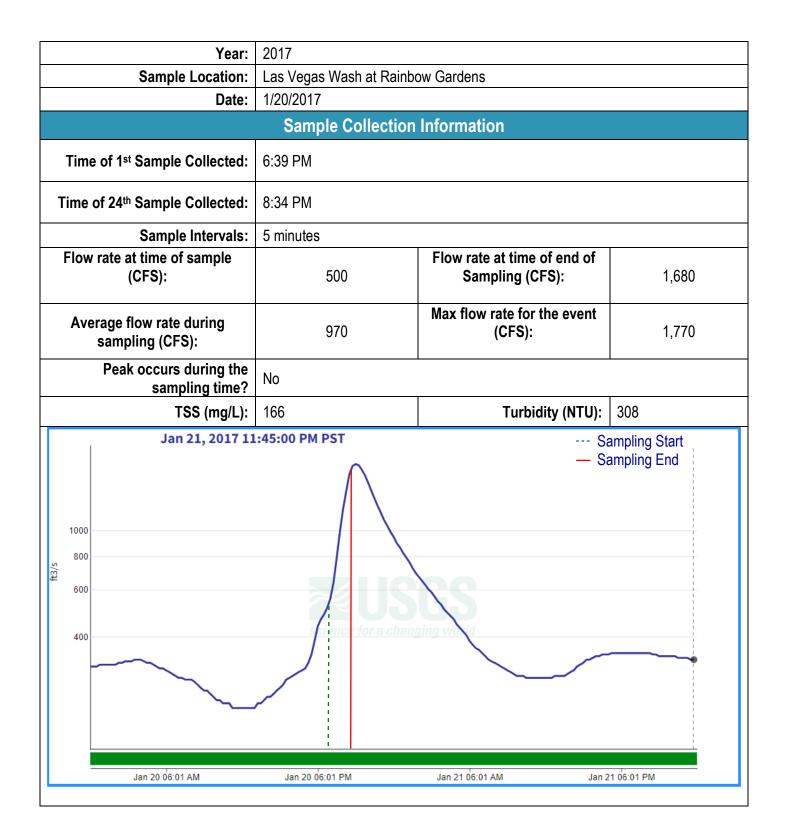


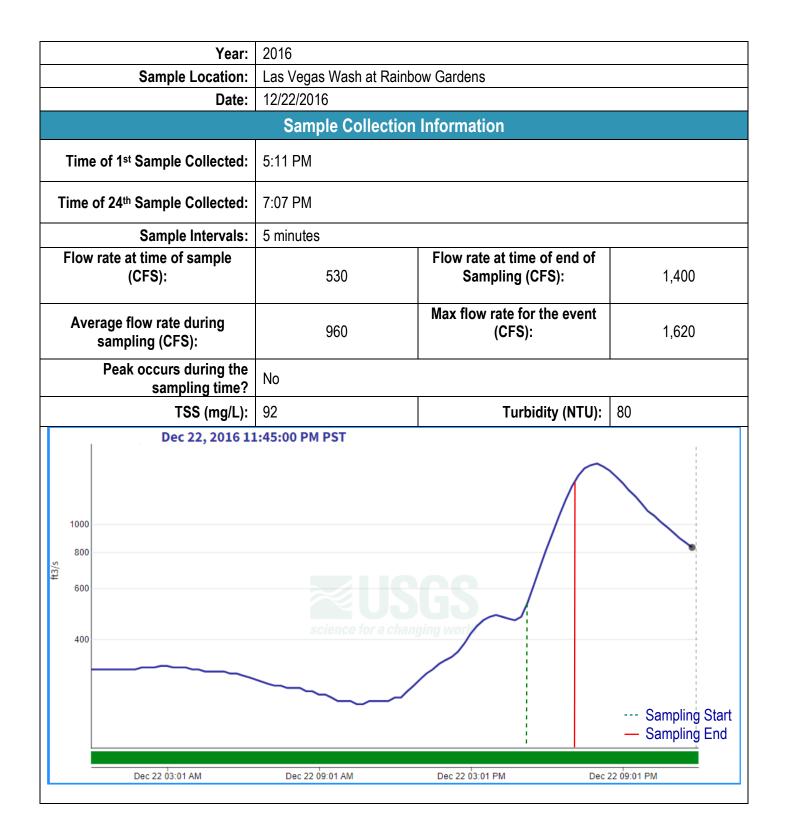




| Sample Location:       Las Vegas Wash at Rainbow Gardens         Date:       11/28/2019         Sample Collection Information         Time of 1st Sample Collected:       8:43 PM         Time of 24th Sample Collected:       9:52 PM         Sample Intervals:       3 Minutes         Flow rate at time of sample<br>(CFS):       2,450         Flow rate at time of sample<br>(CFS):       2,450         Max flow rate for the event<br>(CFS):       2,000 |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sample Collection Information         Time of 1 <sup>st</sup> Sample Collected:       8:43 PM         Time of 24 <sup>th</sup> Sample Collected:       9:52 PM         Sample Intervals:       3 Minutes         Flow rate at time of sample<br>(CFS):       2,450         Flow rate for the event       1,900                                                                                                                                                 | )         |
| Time of 1 <sup>st</sup> Sample Collected:       8:43 PM         Time of 24 <sup>th</sup> Sample Collected:       9:52 PM         Sample Intervals:       3 Minutes         Flow rate at time of sample (CFS):       2,450         Flow rate for the event       1,900                                                                                                                                                                                          | <br><br>) |
| Time of 24th Sample Collected:       9:52 PM         Sample Intervals:       3 Minutes         Flow rate at time of sample (CFS):       2,450         Flow rate for the event       1,900                                                                                                                                                                                                                                                                      | <br><br>) |
| Sample Intervals:       3 Minutes         Flow rate at time of sample (CFS):       2,450         Flow rate at time of end of (CFS):       1,900         Max flow rate for the event       1,900                                                                                                                                                                                                                                                                | <br>      |
| Flow rate at time of sample<br>(CFS):       2,450       Flow rate at time of end of<br>Sampling (CFS):       1,900         Max flow rate for the event       1,900                                                                                                                                                                                                                                                                                             | 0         |
| (CFS):     2,450     Sampling (CFS):     1,900       Max flow rate for the event     1,900                                                                                                                                                                                                                                                                                                                                                                     | 0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         |
| Peak occurs during the sampling time?                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| TSS (mg/L):         120         Turbidity (NTU):         47                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Nov 29, 2019 11:45:00 PM PST Sampling Start<br>Sampling End                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Nov 28 06:01 AM Nov 28 06:01 PM Nov 29 06:01 AM Nov 29 06:01 PM                                                                                                                                                                                                                                                                                                                                                                                                |           |

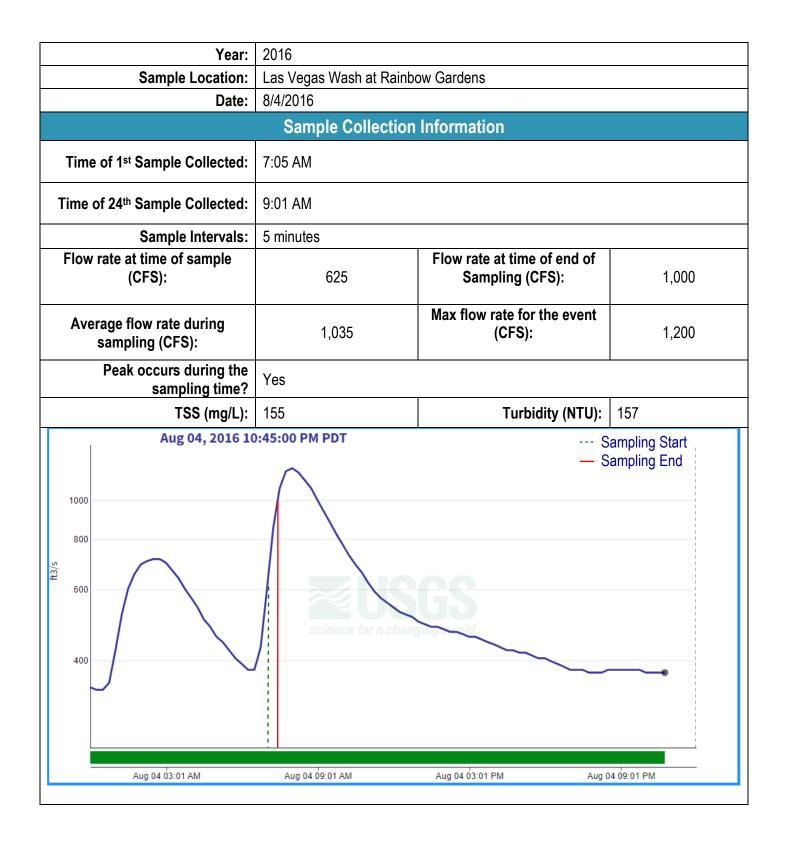



| <b>Year:</b> 2019 |                                         |                      |                                                |                              |  |  |  |
|-------------------|-----------------------------------------|----------------------|------------------------------------------------|------------------------------|--|--|--|
|                   | Sample Location:                        | Las Vegas Wash at Ra | inbow Gardens                                  |                              |  |  |  |
|                   | Date:                                   | ate: 2/14/2019       |                                                |                              |  |  |  |
|                   | Sample Collection Information           |                      |                                                |                              |  |  |  |
| Tin               | ne of 1 <sup>st</sup> Sample Collected: | 1:08 PM              |                                                |                              |  |  |  |
| Time              | e of 24th Sample Collected:             | 2:17 PM              |                                                |                              |  |  |  |
|                   | Sample Intervals:                       | 3 Minutes            |                                                |                              |  |  |  |
| Flo               | w rate at time of sample<br>(CFS):      | 4,240                | Flow rate at time of end of<br>Sampling (CFS): | 4,000                        |  |  |  |
| A                 | verage flow rate (CFS):                 | 4,125                | Max flow rate for the event (CFS):             | 5,060                        |  |  |  |
|                   | Peak occurs during the sampling time?   |                      |                                                |                              |  |  |  |
|                   | TSS (mg/L):                             | 1,180                | Turbidity (NTU):                               | 605                          |  |  |  |
|                   | Feb 14, 2019 1                          | 1:45:00 PM PST       |                                                |                              |  |  |  |
| 500               |                                         |                      | $\sim$                                         |                              |  |  |  |
| 400               |                                         |                      |                                                |                              |  |  |  |
| 300               | 0                                       |                      |                                                |                              |  |  |  |
| 200               | 0                                       |                      |                                                |                              |  |  |  |
| 1000              |                                         |                      |                                                |                              |  |  |  |
| 50                | 0                                       |                      |                                                |                              |  |  |  |
|                   |                                         |                      |                                                | ampling Start<br>ampling End |  |  |  |
|                   | Feb 14 03:01 AM                         | Feb 14 09:01 AM      | Feb 14 03:01 PM Feb                            | 14 09:01 PM                  |  |  |  |

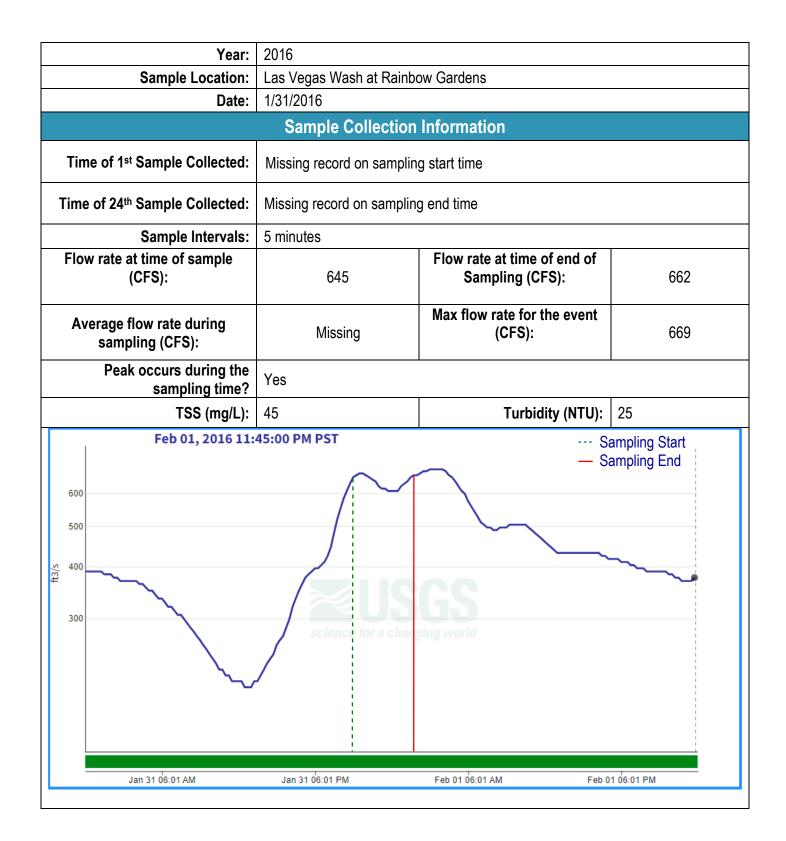


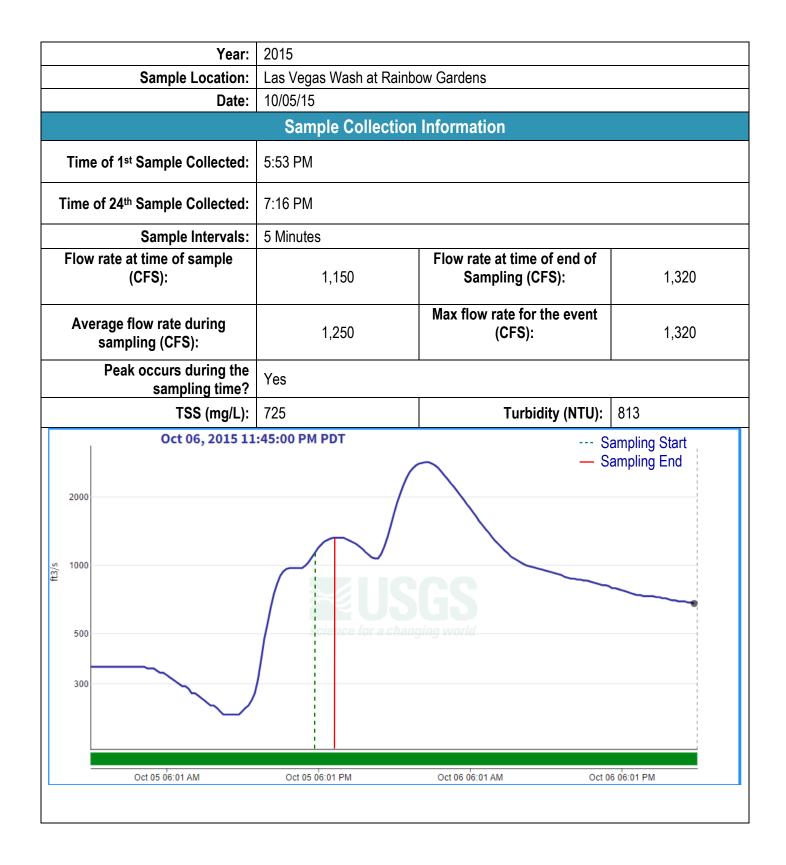



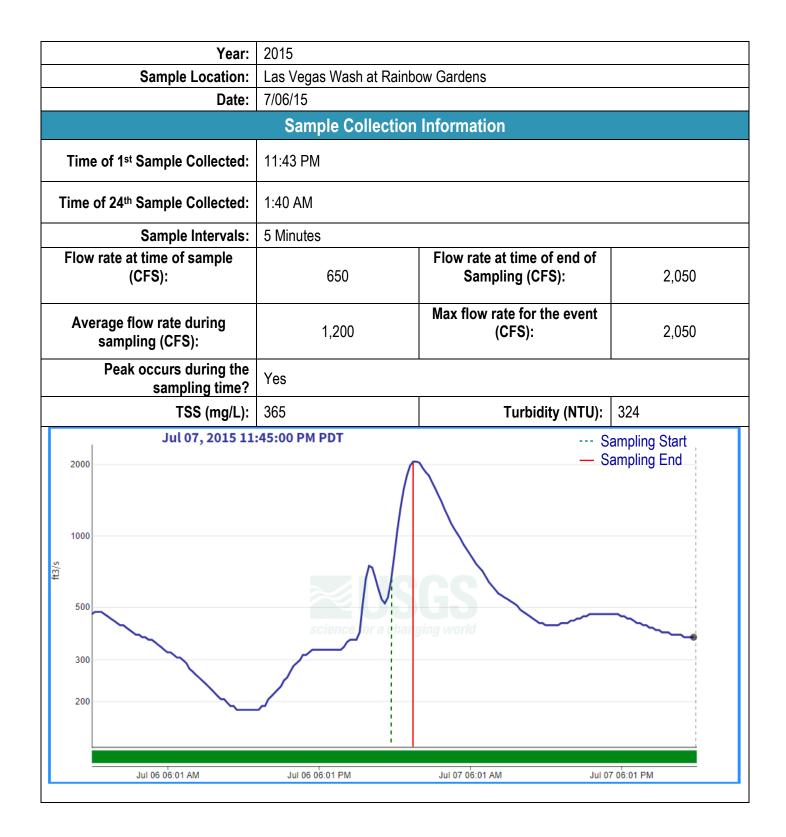

| Year                                     | 2017                 | <b>Year:</b> 2017                           |                                  |  |  |  |  |
|------------------------------------------|----------------------|---------------------------------------------|----------------------------------|--|--|--|--|
| Sample Location:                         | Las Vegas Wash at Ra | ainbow Gardens                              |                                  |  |  |  |  |
| Date                                     | 8/4/2017             |                                             |                                  |  |  |  |  |
|                                          | Sample Collect       | ion Information                             |                                  |  |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected | 5:30 PM              |                                             |                                  |  |  |  |  |
| Time of 24th Sample Collected            | 7:30 PM              |                                             |                                  |  |  |  |  |
| Sample Intervals                         | 5 minutes            |                                             |                                  |  |  |  |  |
| Flow rate at time of sample<br>(CFS):    | 367                  | Flow rate at time of end of Sampling (CFS): | 800                              |  |  |  |  |
| Average flow rate during sampling (CFS): | 825                  | Max flow rate for the event (CFS):          | 1,070                            |  |  |  |  |
| Peak occurs during the<br>sampling time? |                      |                                             |                                  |  |  |  |  |
| TSS (mg/L):                              | 21                   | Turbidity (NTU):                            | 10                               |  |  |  |  |
| Aug 04, 2017 1                           | LO:45:00 PM PDT      | SGS<br>hanging world                        | Sampling Start<br>— Sampling End |  |  |  |  |
| Aug 04 03:01 AM                          | Aug 04 09:01 AM      | Aug 04 03:01 PM Aug                         | 04 09:01 PM                      |  |  |  |  |

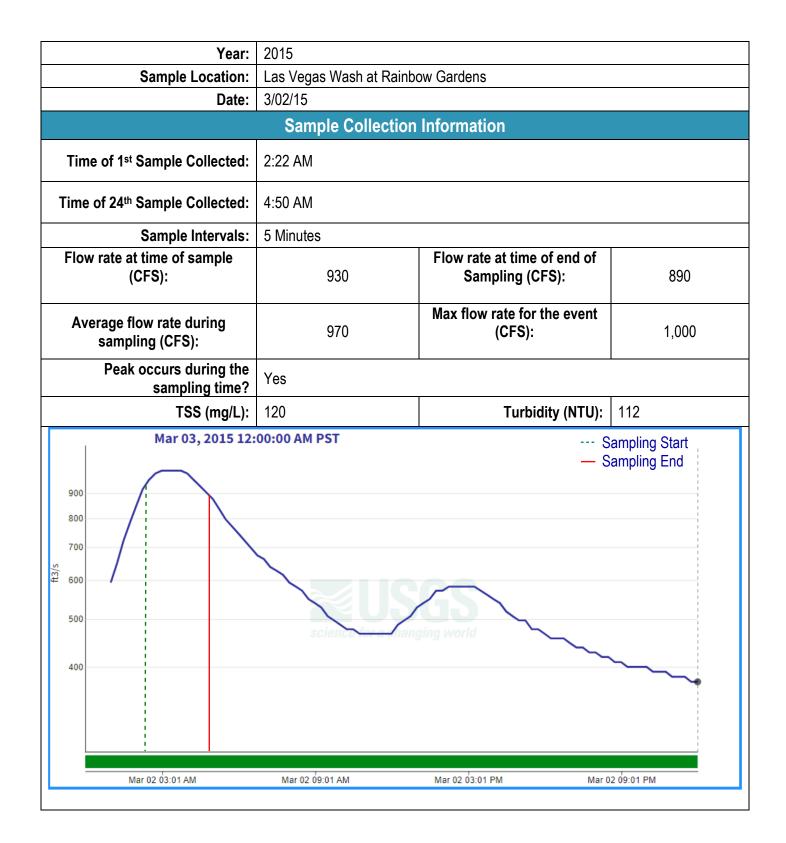


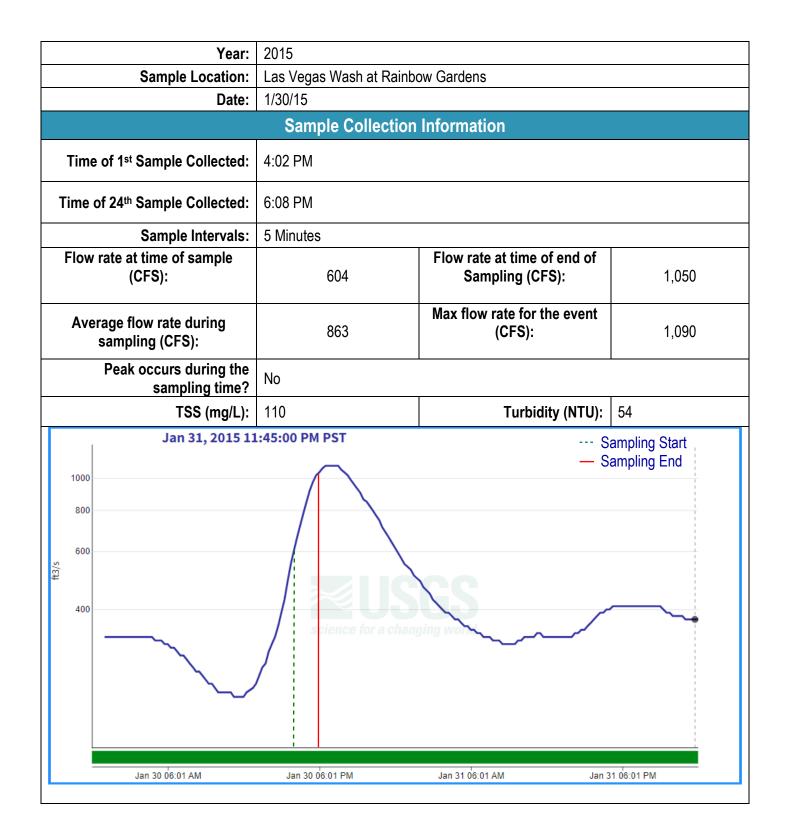

| <b>Year:</b> 2017                                                   |                                           |                      |                                                |              |  |
|---------------------------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------------|--------------|--|
|                                                                     | Sample Location:                          | Las Vegas Wash at Ra | inbow Gardens                                  |              |  |
|                                                                     | Date:                                     | 2/18/2017            |                                                |              |  |
|                                                                     | Sample Collection Information             |                      |                                                |              |  |
| Time                                                                | e of 1 <sup>st</sup> Sample Collected:    | 9:40 AM              |                                                |              |  |
| Time                                                                | of 24th Sample Collected:                 | 11:25 AM             |                                                |              |  |
|                                                                     | Sample Intervals:                         | 5 minutes            |                                                |              |  |
| Flow rate at time of sample (CFS):                                  |                                           | 420                  | Flow rate at time of end of<br>Sampling (CFS): | 1,880        |  |
| Ave                                                                 | erage flow rate during<br>sampling (CFS): | 1,210                | Max flow rate for the event (CFS):             | 1,980        |  |
|                                                                     | Peak occurs during the<br>sampling time?  | No                   |                                                |              |  |
|                                                                     | TSS (mg/L):                               | 492                  | Turbidity (NTU):                               | 152          |  |
| 2000<br>1000<br>1000<br>500<br>1000<br>Science for a changing world |                                           |                      |                                                |              |  |
| 300 -                                                               |                                           |                      |                                                |              |  |
|                                                                     |                                           |                      | - 3                                            | Sampling End |  |

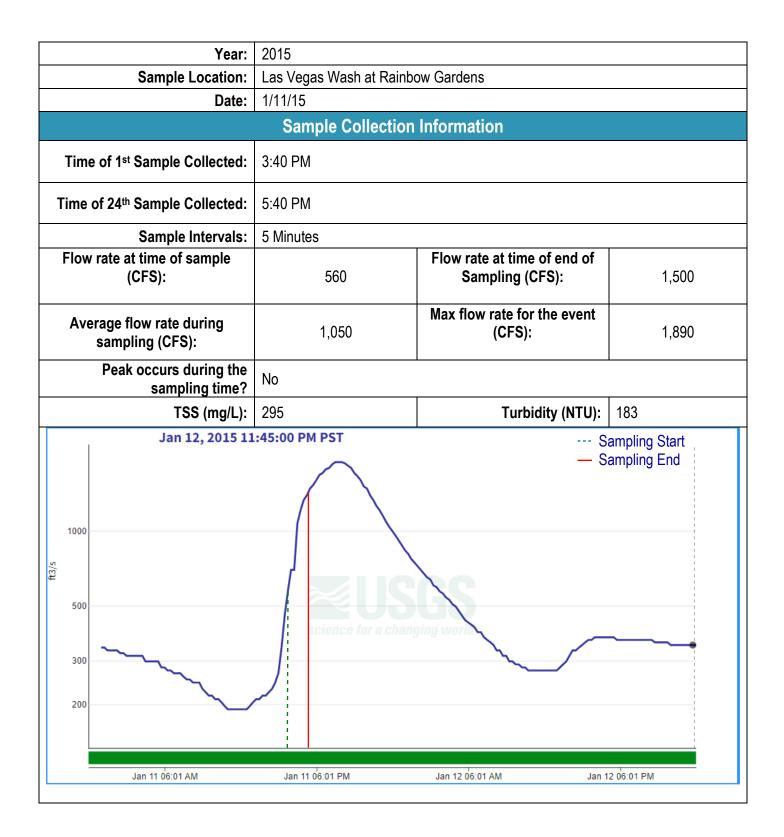


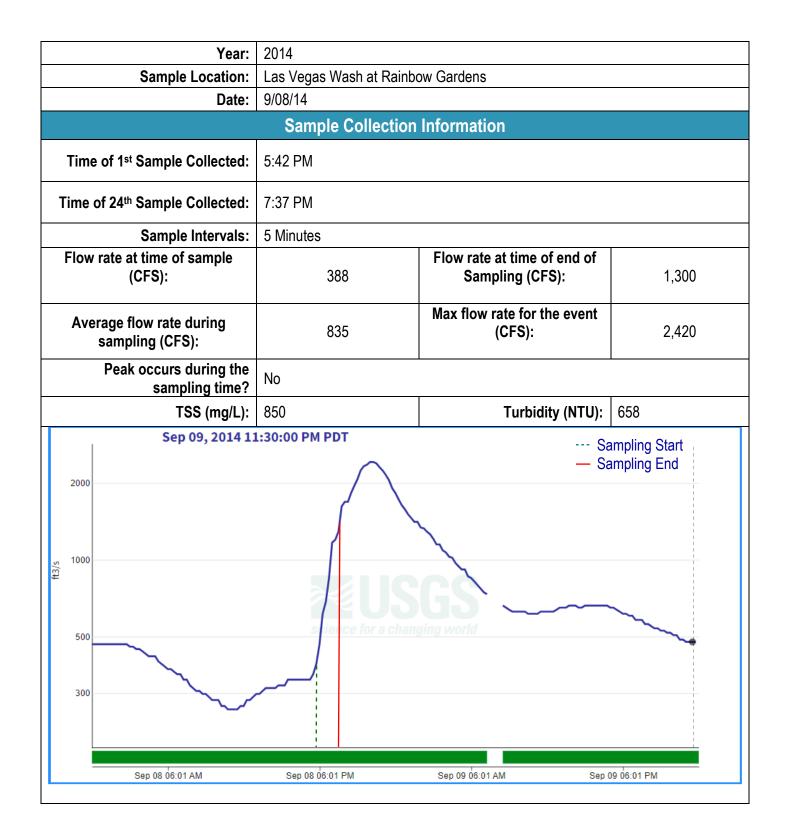



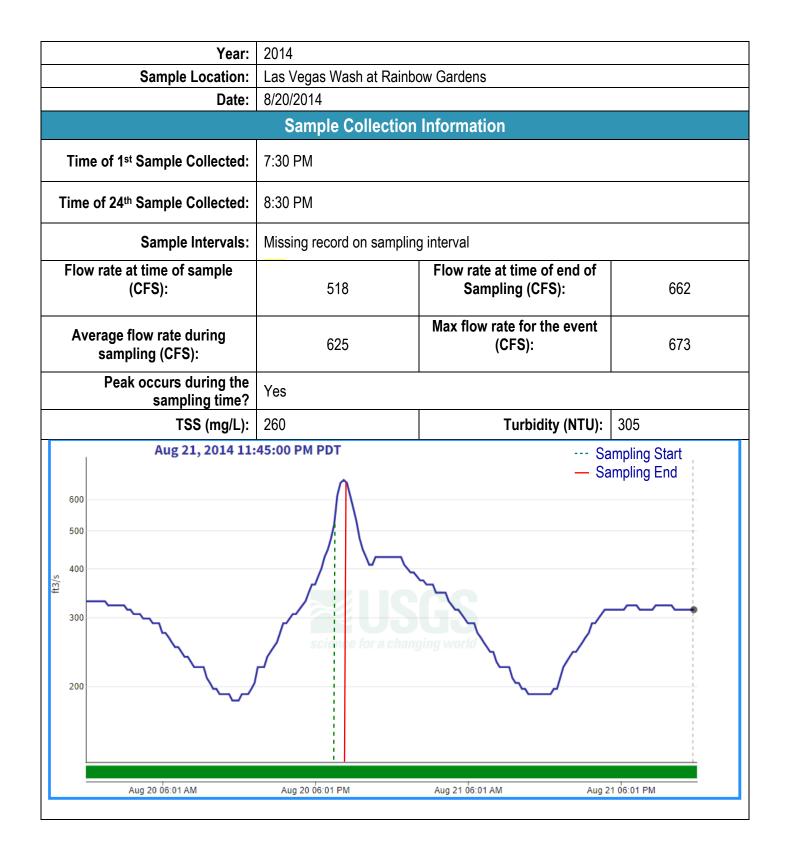


| Year:                                                           | 2016                                          |                                             |            |  |  |
|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------|--|--|
| Sample Location:                                                | Las Vegas Wash at Rainbo                      | ow Gardens                                  |            |  |  |
| Date:                                                           | <b>Date:</b> 8/23/2016                        |                                             |            |  |  |
| Sample Collection Information                                   |                                               |                                             |            |  |  |
| Time of 1 <sup>st</sup> Sample Collected:                       | Missing record on samplin                     | g start time                                |            |  |  |
| Time of 24 <sup>th</sup> Sample Collected:                      | Missing record on sampling                    | g end time                                  |            |  |  |
| Sample Intervals:                                               | Missing record on sampling                    | g interval                                  |            |  |  |
| Flow rate at time of sample (CFS):                              | 800                                           | Flow rate at time of end of Sampling (CFS): | 950        |  |  |
| Average flow rate during sampling (CFS):                        | Missing                                       | Max flow rate for the event<br>(CFS):       | 7,100      |  |  |
| Peak occurs during the<br>sampling time?                        | Prob not due to automated sampler malfunction |                                             |            |  |  |
| TSS (mg/L):                                                     | 525                                           | Turbidity (NTU):                            | 730        |  |  |
| Aug 23, 2016 10:45:00 PM PDT Sampling Start<br>Sampling End<br> |                                               |                                             |            |  |  |
| Aug 22 06:01 AM                                                 | Aug 22 06:01 PM                               | Aug 23 06:01 AM Aug 2                       | 3 06:01 PM |  |  |





| Year: 2016                                |                      |                                             |                                  |  |  |
|-------------------------------------------|----------------------|---------------------------------------------|----------------------------------|--|--|
| Sample Location:                          | Las Vegas Wash at Ra | ainbow Gardens                              |                                  |  |  |
| Date:                                     | 4/9/2016             |                                             |                                  |  |  |
| Sample Collection Information             |                      |                                             |                                  |  |  |
| Time of 1 <sup>st</sup> Sample Collected: | 5:50 PM              |                                             |                                  |  |  |
| Time of 24th Sample Collected:            | 7:50 PM              |                                             |                                  |  |  |
| Sample Intervals:                         | 5 minutes            |                                             |                                  |  |  |
| Flow rate at time of sample<br>(CFS):     | 7,100                | Flow rate at time of end of Sampling (CFS): | 3,700                            |  |  |
| Average flow rate during sampling (CFS):  | 5,215                | Max flow rate for the event (CFS):          | 7,700                            |  |  |
| Peak occurs during the<br>sampling time?  |                      |                                             |                                  |  |  |
| TSS (mg/L):                               | 175                  | Turbidity (NTU):                            | 111                              |  |  |
| Apr 09, 2016                              | 10:45:00 PM PDT      | SGS<br>hanging we for                       | Sampling Start<br>— Sampling End |  |  |
| Apr 09 03:01 AM                           | Apr 09 09:01 AM      | Apr 09 03:01 PM Apr 0                       | 9 09:01 PM                       |  |  |



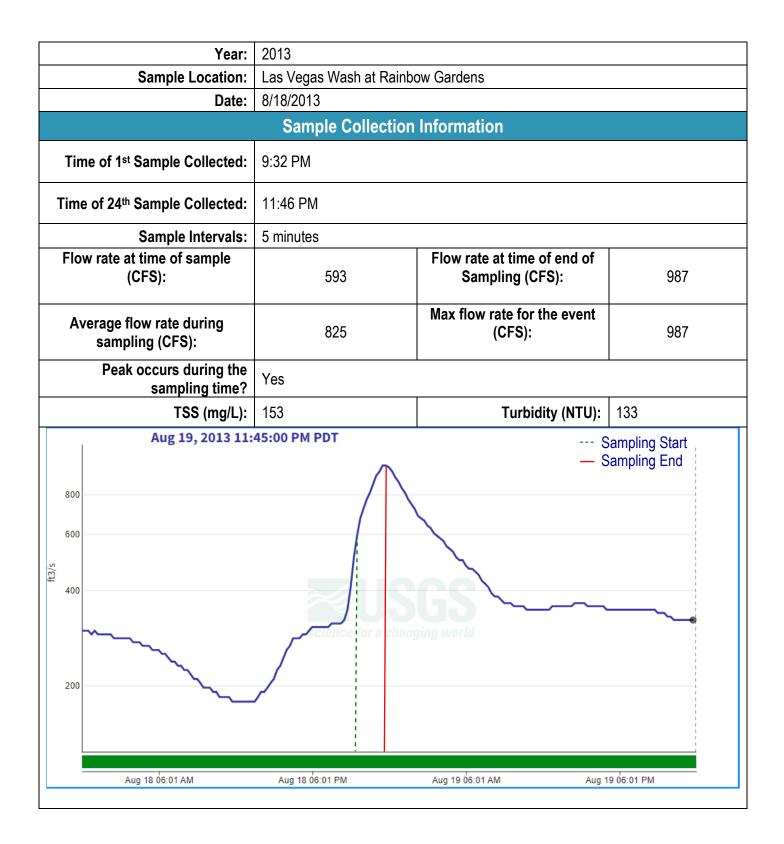









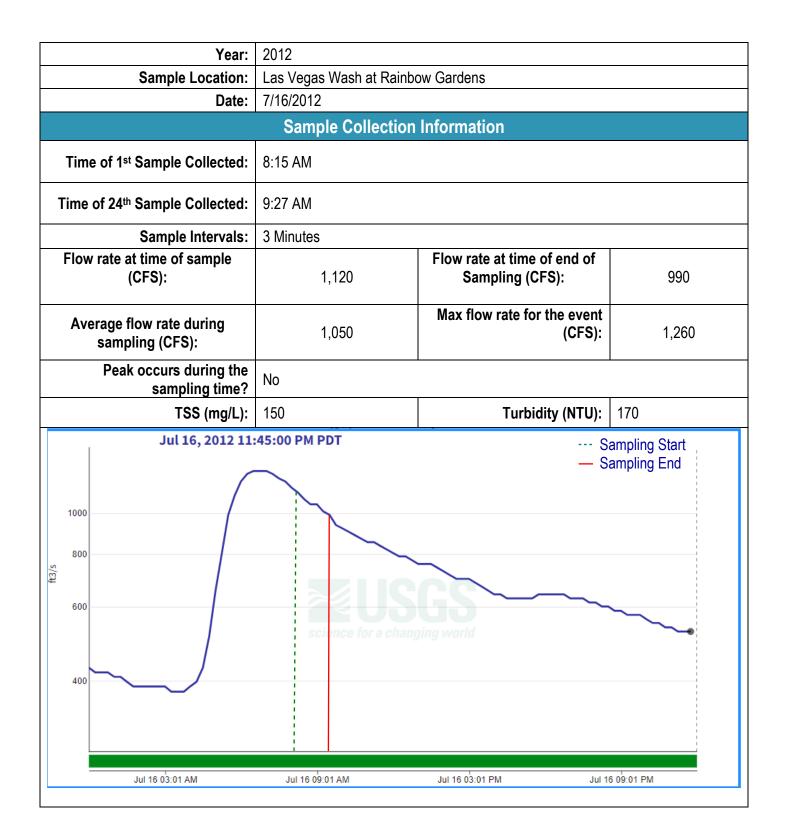



|                                                                                                                                                                                                                                                              | 8/04/2014<br>Sample Collection<br>3:30 AM<br>5:15 AM        |                                                | 1,040                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|------------------------------|--|
| Time of 1 <sup>st</sup> Sample Collected<br>Time of 24 <sup>th</sup> Sample Collected<br>Sample Intervals<br>Flow rate at time of sample<br>(CFS):<br>Average flow rate during<br>sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L): | Sample Collection<br>3:30 AM<br>5:15 AM<br>5 Minutes<br>457 | Flow rate at time of end of<br>Sampling (CFS): | 1,040                        |  |
| Time of 24 <sup>th</sup> Sample Collected<br>Sample Intervals<br>Flow rate at time of sample<br>(CFS):<br>Average flow rate during<br>sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L):                                             | 3:30 AM<br>5:15 AM<br>5 Minutes<br>457                      | Flow rate at time of end of<br>Sampling (CFS): | 1,040                        |  |
| Time of 24 <sup>th</sup> Sample Collected<br>Sample Intervals<br>Flow rate at time of sample<br>(CFS):<br>Average flow rate during<br>sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L):                                             | 5:15 AM<br>5 Minutes<br>457                                 | Sampling (CFS):                                | 1,040                        |  |
| Sample Intervals<br>Flow rate at time of sample<br>(CFS):<br>Average flow rate during<br>sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L):                                                                                          | 5 Minutes<br>457                                            | Sampling (CFS):                                | 1,040                        |  |
| Flow rate at time of sample<br>(CFS):<br>Average flow rate during<br>sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L):                                                                                                              | 457                                                         | Sampling (CFS):                                | 1,040                        |  |
| (CFS):<br>Average flow rate during<br>sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L):                                                                                                                                             |                                                             | Sampling (CFS):                                | 1,040                        |  |
| sampling (CFS):<br>Peak occurs during the<br>sampling time?<br>TSS (mg/L):                                                                                                                                                                                   | 718                                                         | Max flow rate for the event                    |                              |  |
| sampling time?<br>TSS (mg/L):                                                                                                                                                                                                                                |                                                             | (CFS):                                         | 1,460                        |  |
|                                                                                                                                                                                                                                                              | Peak occurs during the sampling time?                       |                                                |                              |  |
| Aug 04, 2014                                                                                                                                                                                                                                                 | 548                                                         | Turbidity (NTU):                               | 473                          |  |
| 1000<br>800<br>600<br>400                                                                                                                                                                                                                                    | Science for a cha                                           |                                                |                              |  |
| Aug 03 06:01 AM                                                                                                                                                                                                                                              | Aug 03 06:01 PM                                             | — Sa                                           | ampling Start<br>ampling End |  |

| Sample Location:       Las Vegas Wash at Rainbow Gardens         Date:       11/21/2013         Sample Collection Information         Time of 1st Sample Collected:       8:45 PM         Sample Intervals:       2 minutes         Flow rate at time of sample<br>(CFS):       2 minutes         Flow rate at time of sample<br>(CFS):       1,580       Flow rate at time of end of<br>Sampling (CFS):       1,620         Average flow rate during<br>sampling (CFS):       1,612       Max flow rate for the event<br>(CFS):       2,260         Peak occurs during the<br>sampling time?       860       Turbidity (NTU):       734         Output to the sampling time?         1000       Turbidity (NTU):       734         Output to the sampling time?         1000       Turbidity (NTU):       734         1000       Sampling time?       Sampling time?         1000       Intervent to the sampling time?       Sampling time?         1000       Intervent to the sampling time?       Sampling time?         1000       Intervent to the sampling time?       Intervent to the sampling time?         1000       Intervent to the sampling time?       Intervent to the sampling time?         1000       Intervent to the sampling time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Year:                                     | 2013                          |                       |             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|-----------------------|-------------|--|--|
| Sample Collection Information         Time of 1st Sample Collected:       8:45 PM         Time of 24th Sample Collected:       9:45 PM         Sample Intervals:       2 minutes         Flow rate at time of sample<br>(CFS):       1,580       Flow rate at time of end of<br>Sampling (CFS):       1,620         Average flow rate during<br>sampling (CFS):       1,612       Max flow rate for the event<br>(CFS):       2,260         Peak occurs during the<br>sampling time?       No       1       360       Turbidity (NTU):       734         Vov 22, 2013 11:45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Location:                          | Las Vegas Wash at Ra          | ainbow Gardens        |             |  |  |
| Time of 1st Sample Collected:       8:45 PM         Time of 24th Sample Collected:       9:45 PM         Sample Intervals:       2 minutes         Flow rate at time of sample<br>(CFS):       1,580         Average flow rate during<br>sampling (CFS):       1,612         Average flow rate during<br>sampling (CFS):       1,612         Peak occurs during the<br>sampling time?       No         TSS (mg/L):       860       Turbidity (NTU):       734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date:                                     | Date: 11/21/2013              |                       |             |  |  |
| Time of 24th Sample Collected:       9:45 PM         Sample Intervals:       2 minutes         Flow rate at time of sample<br>(CFS):       1,580       Flow rate at time of end of<br>Sampling (CFS):       1,620         Average flow rate during<br>sampling (CFS):       1,612       Max flow rate for the event<br>(CFS):       2,260         Peak occurs during the<br>sampling time?       No       Turbidity (NTU):       734         Nov 22, 2013 11:45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | Sample Collection Information |                       |             |  |  |
| Sample Intervals:       2 minutes         Flow rate at time of sample<br>(CFS):       1,580       Flow rate at time of end of<br>Sampling (CFS):       1,620         Average flow rate during<br>sampling (CFS):       1,612       Max flow rate for the event<br>(CFS):       2,260         Peak occurs during the<br>sampling time?       No       No       734         TSS (mg/L):       860       Turbidity (NTU):       734         Output       734       Sampling Start<br>- Sampling End       Sampling End         Output       1000       JSSGSS       JSSGSS         Sou       JSSGSS       JSSGSS       JSSGSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time of 1 <sup>st</sup> Sample Collected: | 8:45 PM                       |                       |             |  |  |
| Flow rate at time of sample<br>(CFS):       1,580       Flow rate at time of end of<br>Sampling (CFS):       1,620         Average flow rate during<br>sampling (CFS):       1,612       Max flow rate for the event<br>(CFS):       2,260         Peak occurs during the<br>sampling time?       No       Turbidity (NTU):       734         TSS (mg/L):       860       Turbidity (NTU):       734         Output       Sampling End       Sampling End       Sampling End         Image: sampling time?       Sampling in a changing world       Sampling world       Sampling world                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time of 24th Sample Collected:            | 9:45 PM                       |                       |             |  |  |
| (CFS):     1,580     Sampling (CFS):     1,620       Average flow rate during sampling (CFS):     1,612     Max flow rate for the event (CFS):     2,260       Peak occurs during the sampling time?     No     Sampling (CFS):     734       TSS (mg/L):     860     Turbidity (NTU):     734       Nov 22, 2013 11:45:00 PM PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Intervals:                         | 2 minutes                     |                       |             |  |  |
| Average flow rate during<br>sampling (CFS): 1,612 (CFS): 2,260<br>Peak occurs during the<br>sampling time? No<br>TSS (mg/L): 860 Turbidity (NTU): 734<br>Nov 22, 2013 11:45:00 PM PST Sampling Start<br>Sampling End<br>500<br>500<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 1,580                         |                       | 1,620       |  |  |
| sampling time?     Nov       TSS (mg/L):     860     Turbidity (NTU):     734       Nov 22, 2013 11:45:00 PM PST     Sampling Start       Sampling End       1000       500       300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 1,612                         |                       | 2,260       |  |  |
| Nov 22, 2013 11:45:00 PM PST<br>Sampling Start<br>Sampling End<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Solution<br>Soluti |                                           | No                            |                       |             |  |  |
| 2000<br>1000<br>500<br>500<br>300<br>Sompling End<br>Sampling End<br>Sam                                                                                             | TSS (mg/L):                               | 860                           | Turbidity (NTU):      | 734         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000<br>1000<br>500<br>300                |                               | -s<br>SGS             |             |  |  |
| Nov 21 06:01 AM Nov 21 06:01 PM Nov 22 06:01 AM Nov 22 06:01 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nov 21 06:01 AM                           | Nov 21 06:01 PM               | Nov 22 06:01 AM Nov 2 | 22 06:01 PM |  |  |

| Sample Location:       Las Vegas Wash at Rainbow Gardens         Date:       8/25/2013         Sample Collection Information         Time of 1st Sample Collected:       11:09 PM         Time of 24th Sample Collected:       1:04 AM         Sample Intervals:       5 minutes         Flow rate at time of sample (CFS):       2,950         Average flow rate during sampling (CFS):       1,780         Max flow rate for the event sampling time?       3,080         Peak occurs during the sampling time?       No         TSS (mg/L):       1,003       Turbidity (NTU):       906         Average flow rate during sampling time?       No       Sampling time?       Sampling time?         To dot 4t       No       Sampling time?       Sampling time?       Sampling time?         Jood       Average flow rate during the sampling time?       No       Sampling time?       Sampling time?         To dot 4t       No       Sampling time?       No       Sampling time?       Sampling time?         Jood       Average flow rate to the time of end of time?       Sampling time?       Sampling time?       Sampling time?         Jood       Turbidity (NTU):       906       Sampling time?       Sampling time?       Sampling time?         Jood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Year:</b> 2013                          |                               |                       |               |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|-----------------------|---------------|--|--|--|
| Sample Collection Information         Time of 1 <sup>st</sup> Sample Collected:       11:09 PM         Time of 24 <sup>th</sup> Sample Collected:       1:04 AM         Sample Intervals:       5 minutes         Flow rate at time of sample<br>(CFS):       408       Flow rate at time of end of<br>Sampling (CFS):       2,950         Average flow rate during<br>sampling (CFS):       1,780       Max flow rate for the event<br>(CFS):       3,080         Peak occurs during the<br>sampling time?       No       Turbidity (NTU):       906         TSS (mg/L):       1,003       Turbidity (NTU):       906         Aug 26, 2013 11:45:00 PM PDT       Sampling Start       Sampling Start         3000       500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Location:                           | Las Vegas Wash at Rainb       | oow Gardens           |               |  |  |  |
| Time of 1 <sup>st</sup> Sample Collected:       11:09 PM         Time of 24 <sup>th</sup> Sample Collected:       1:04 AM         Sample Intervals:       5 minutes         Flow rate at time of sample<br>(CFS):       408       Flow rate at time of end of<br>Sampling (CFS):       2,950         Average flow rate during<br>sampling (CFS):       1,780       Max flow rate for the event<br>(CFS):       3,080         Peak occurs during the<br>sampling time?       No       TSS (mg/L):       1,003       Turbidity (NTU):       906         Aug 26, 2013 11:45:00 PM PDT       Sampling Start<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                      | 8/25/2013                     |                       |               |  |  |  |
| Time of 24 <sup>th</sup> Sample Collected:       1:04 AM         Sample Intervals:       5 minutes         Flow rate at time of sample<br>(CFS):       408       Flow rate at time of end of<br>Sampling (CFS):       2,950         Average flow rate during<br>sampling (CFS):       1,780       Max flow rate for the event<br>(CFS):       3,080         Peak occurs during the<br>sampling time?       No       Turbidity (NTU):       906         Aug 26, 2013 11:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | Sample Collection Information |                       |               |  |  |  |
| Sample Intervals:       5 minutes         Flow rate at time of sample<br>(CFS):       408       Flow rate at time of end of<br>Sampling (CFS):       2,950         Average flow rate during<br>sampling (CFS):       1,780       Max flow rate for the event<br>(CFS):       3,080         Peak occurs during the<br>sampling time?       No       Turbidity (NTU):       906         Aug 26, 2013 11:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time of 1 <sup>st</sup> Sample Collected:  | 11:09 PM                      |                       |               |  |  |  |
| Flow rate at time of sample<br>(CFS):       408       Flow rate at time of end of<br>Sampling (CFS):       2,950         Average flow rate during<br>sampling (CFS):       1,780       Max flow rate for the event<br>(CFS):       3,080         Peak occurs during the<br>sampling time?       No       Image: CFS):       3,080         TSS (mg/L):       1,003       Turbidity (NTU):       906         Aug 26, 2013 11:45:00 PM PDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time of 24 <sup>th</sup> Sample Collected: | 1:04 AM                       |                       |               |  |  |  |
| (CFS):     408     Sampling (CFS):     2,950       Average flow rate during sampling (CFS):     1,780     Max flow rate for the event (CFS):     3,080       Peak occurs during the sampling time?     No     Turbidity (NTU):     906       Aug 26, 2013 11:45:00 PM PDT     Sampling Start Sampling End       Joint Description     Sampling CFS):     Sampling CFS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Intervals:                          | 5 minutes                     |                       |               |  |  |  |
| Average now rate during sampling (CFS): 3,080<br>Peak occurs during the sampling time?<br>TSS (mg/L): 1,003<br>Aug 26, 2013 11:45:00 PM PDT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 408                           |                       | 2,950         |  |  |  |
| sampling time? <sup>140</sup><br>TSS (mg/L): 1,003 Turbidity (NTU): 906<br>Aug 26, 2013 11:45:00 PM PDT Sampling Start<br>Sampling End<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 |                                            | 1,780                         |                       | 3,080         |  |  |  |
| Aug 26, 2013 11:45:00 PM PDT Sampling Start<br>Sampling End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | No                            | -                     |               |  |  |  |
| 3000<br>2000<br>2000<br>500<br>300<br>200<br>4<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TSS (mg/L):                                | 1,003                         | Turbidity (NTU):      | 906           |  |  |  |
| Sampling End<br>Source for Charging world                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aug 26, 2013 1                             | 1:45:00 PM PDT                | Si                    | ampling Start |  |  |  |
| E 1000<br>500<br>500<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000                                       | ſ                             |                       |               |  |  |  |
| <sup>100</sup> 1000<br>500<br>300<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000                                       | /                             |                       |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                               |                       |               |  |  |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500                                        | science for a chan            |                       |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                                        |                               |                       |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                        |                               |                       |               |  |  |  |
| Aug 25 00.0 FAMI Aug 25 00.0 FPMI Aug 25 00.0 FPMI Aug 25 00.0 FPMI Aug 25 00.0 FPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aug 25 06:01 AM                            | Aug 25 06:01 PM               | Aug 26 06:01 AM Aug 2 | 26 06:01 PM   |  |  |  |

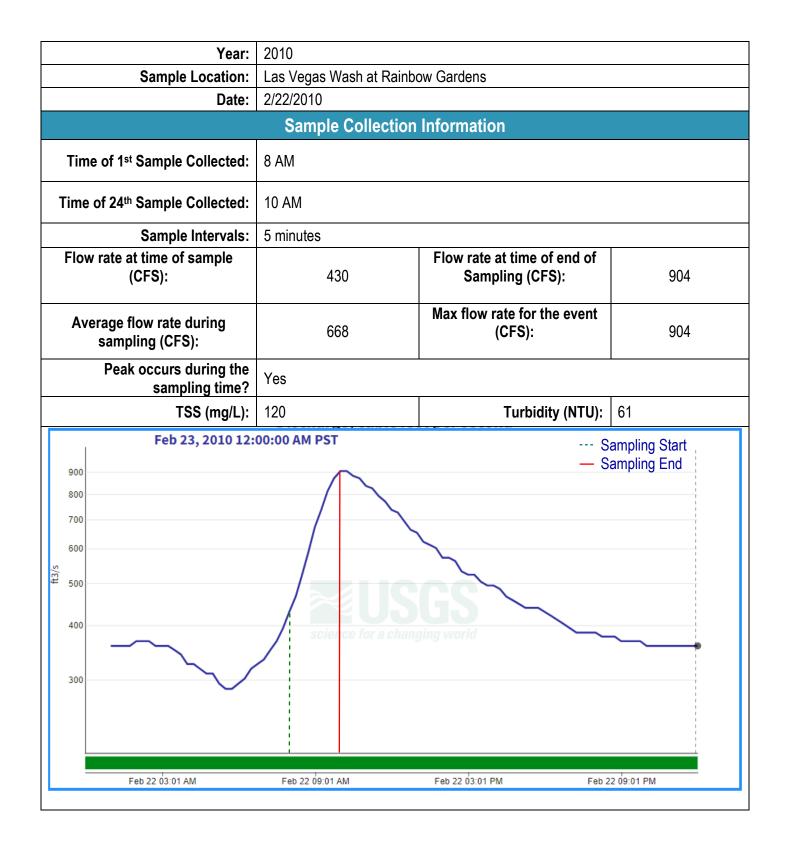


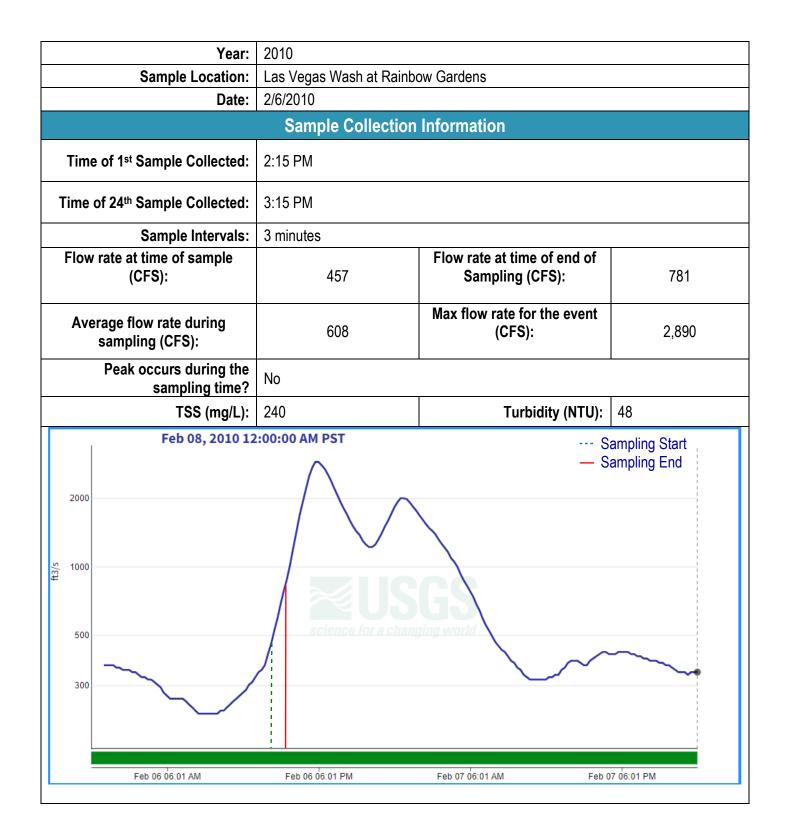

|                                                                                                    | Year: 2013                            |                         |                                             |            |     |                 |                                 |
|----------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|---------------------------------------------|------------|-----|-----------------|---------------------------------|
| San                                                                                                | ple Location:                         | Las Vegas Wash at Rainb | Las Vegas Wash at Rainbow Gardens           |            |     |                 |                                 |
|                                                                                                    | Date:                                 | 7/19/2013               |                                             |            |     |                 |                                 |
|                                                                                                    |                                       | Sample Collection       | Information                                 |            |     |                 |                                 |
| Time of 1st Sample Collected:       11:13 PM         Time of 24th Sample Collected:       12:55 AM |                                       |                         |                                             |            |     |                 |                                 |
|                                                                                                    |                                       |                         |                                             |            | San | nple Intervals: | Missing record on sampling inte |
| Flow rate at time<br>(CFS)                                                                         |                                       | 500                     | Flow rate at time of end of Sampling (CFS): | 5,000      |     |                 |                                 |
| Average flow rasing (                                                                              |                                       | 4,430                   | Max flow rate for the event (CFS):          | 6,390      |     |                 |                                 |
|                                                                                                    | Peak occurs during the sampling time? |                         |                                             |            |     |                 |                                 |
|                                                                                                    | TSS (mg/L):                           | 2,585                   | Turbidity (NTU):                            | 203        |     |                 |                                 |
| Jul 20, 2013 11:45:00 PM PDT Sampling Start<br>                                                    |                                       |                         |                                             |            |     |                 |                                 |
| Jul 19 (                                                                                           | 6:01 AM                               | Jul 19 06:01 PM         | Jul 20 06:01 AM Jul 2                       | 0 06:01 PM |     |                 |                                 |

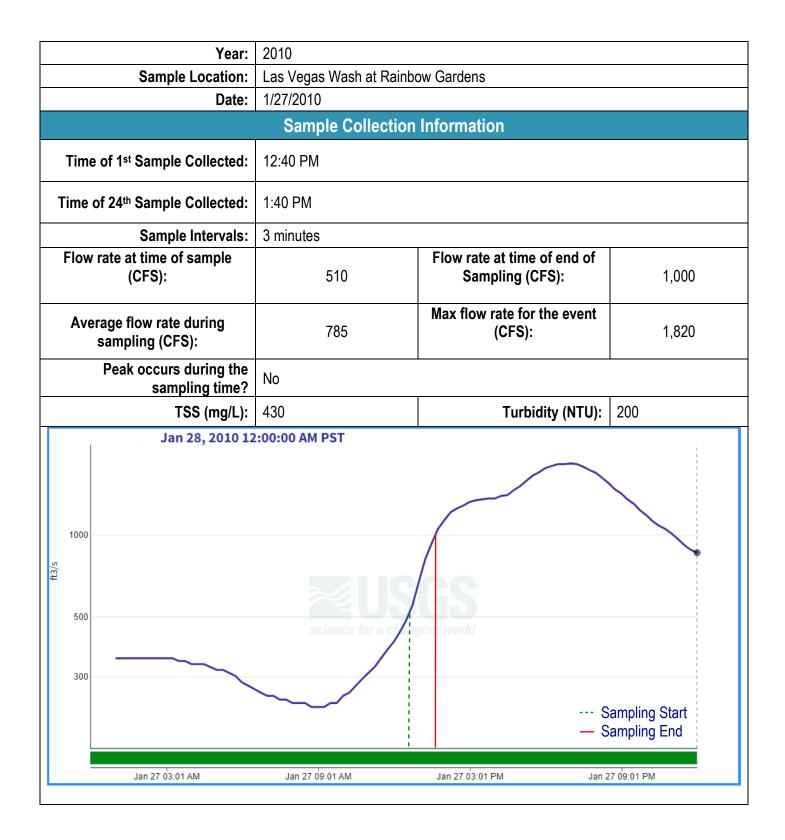
| Year:                                      | 2013                    |                                             |                              |
|--------------------------------------------|-------------------------|---------------------------------------------|------------------------------|
| Sample Location:                           | Las Vegas Wash at Rainb | oow Gardens                                 |                              |
| Date:                                      | 1/26/2013               |                                             |                              |
|                                            | Sample Collection       | Information                                 |                              |
| Time of 1 <sup>st</sup> Sample Collected:  | 8:45 AM                 |                                             |                              |
| Time of 24 <sup>th</sup> Sample Collected: | 9:10 AM                 |                                             |                              |
| Sample Intervals:                          | 2 Minutes               |                                             |                              |
| Flow rate at time of sample<br>(CFS):      | 1,090                   | Flow rate at time of end of Sampling (CFS): | 1,120                        |
| Average flow rate during sampling (CFS):   | 1,124                   | Max flow rate for the event (CFS):          | 1,130                        |
| Peak occurs during the<br>sampling time?   | No                      |                                             |                              |
| TSS (mg/L):                                | 370                     | Turbidity (NTU):                            | 170                          |
| Jan 27, 2013 12                            | 2:00:00 AM PST          |                                             | ampling Start<br>ampling End |
| Jan 26 03:01 AM                            | Jan 26 09:01 AM         | Jan 26 03:01 PM Jan 2                       | 26 09:01 PM                  |

| Year:                                         | 2012                    |                                             |                              |
|-----------------------------------------------|-------------------------|---------------------------------------------|------------------------------|
| Sample Location:                              | Las Vegas Wash at Rainb | ow Gardens                                  |                              |
| Date:                                         | 10/11/2012              |                                             |                              |
|                                               | Sample Collection       | Information                                 |                              |
| Time of 1 <sup>st</sup> Sample Collected:     | 5:56 AM                 |                                             |                              |
| Time of 24 <sup>th</sup> Sample Collected:    | 7:51 AM                 |                                             |                              |
| Sample Intervals:                             | 5 Minutes               |                                             |                              |
| Flow rate at time of sample<br>(CFS):         | 670                     | Flow rate at time of end of Sampling (CFS): | 2,540                        |
| Average flow rate during sampling (CFS):      | 1,925                   | Max flow rate for the event (CFS):          | 2,590                        |
| Peak occurs during the sampling time?         | Yes                     | -                                           |                              |
| TSS (mg/L):                                   | 1,200                   | Turbidity (NTU):                            | 720                          |
| Oct 11, 2012 1<br>3000<br>2000<br>1000<br>500 | 1:45:00 PM PDT          | -s<br>GS                                    | ampling Start<br>ampling End |
| Oct 11 03:01 AM                               | Oct 11 09:01 AM         | Oct 11 03:01 PM Oct 1                       | 11 09:01 PM                  |
|                                               |                         |                                             |                              |

| Year:                                                                            | 2012                     |                                             |                |
|----------------------------------------------------------------------------------|--------------------------|---------------------------------------------|----------------|
| Sample Location:                                                                 | Las Vegas Wash at Rainbo | ow Gardens                                  |                |
| Date:                                                                            | 9/11/2012                |                                             |                |
|                                                                                  | Sample Collection        | Information                                 |                |
| Time of 1 <sup>st</sup> Sample Collected:                                        | 4:30 PM                  |                                             |                |
| Time of 24 <sup>th</sup> Sample Collected:                                       | 6:30 PM                  |                                             |                |
| Sample Intervals:                                                                | 5 minutes                |                                             |                |
| Flow rate at time of sample<br>(CFS):                                            | 2,130                    | Flow rate at time of end of Sampling (CFS): | 11,900         |
| Average flow rate during sampling (CFS):                                         | 11,560                   | Max flow rate for the event (CFS):          | 14,700         |
| Peak occurs during the<br>sampling time?                                         | Yes                      |                                             |                |
| TSS (mg/L):                                                                      | 12,000                   | Turbidity (NTU):                            | 3,700          |
| Sep 12, 2012 1<br>10000<br>8000<br>4000<br>4000<br>1000<br>500<br>300<br>200<br> | 1:45:00 PM PDT           |                                             | Sampling Start |
| Sep 11 06:01 AM                                                                  | Sep 11 06:01 PM          | Sep 12 06:01 AM Sep                         | 12 06:01 PM    |


| Year:                                      | 2012                 |                                                |                                |
|--------------------------------------------|----------------------|------------------------------------------------|--------------------------------|
| Sample Location:                           | Las Vegas Wash at Ra | ainbow Gardens                                 |                                |
| Date:                                      | 7/31/2012            |                                                |                                |
|                                            | Sample Collect       | ion Information                                |                                |
| Time of 1 <sup>st</sup> Sample Collected:  | 6:41 PM              |                                                |                                |
| Time of 24 <sup>th</sup> Sample Collected: | 7:46 PM              |                                                |                                |
| Sample Intervals:                          | 5 Minutes            |                                                |                                |
| Flow rate at time of sample<br>(CFS):      | 610                  | Flow rate at time of end of<br>Sampling (CFS): | 887                            |
| Average flow rate during sampling (CFS):   | 835                  | Max flow rate for the event (CFS):             | 938                            |
| Peak occurs during the<br>sampling time?   | Yes                  |                                                |                                |
| TSS (mg/L):                                | 150                  | Turbidity (NTU):                               | 83                             |
| Sec 200                                    | science for a c      | SGS                                            | Sampling Start<br>Sampling End |
| Jul 31 03:01 AM                            | Jul 31 09:01 AM      | Jul 31 03:01 PM Jul 3                          | 31 09:01 PM                    |
|                                            |                      |                                                |                                |





| Year:                                      | 2011                   |                                             |                                |
|--------------------------------------------|------------------------|---------------------------------------------|--------------------------------|
| Sample Location:                           | Las Vegas Wash at Rair | nbow Gardens                                |                                |
| Date:                                      | 10/3/2011              |                                             |                                |
|                                            | Sample Collection      | on Information                              |                                |
| Time of 1 <sup>st</sup> Sample Collected:  | 8:15 PM                |                                             |                                |
| Time of 24 <sup>th</sup> Sample Collected: | 9:50 PM                |                                             |                                |
| Sample Intervals:                          | 4 minutes              |                                             |                                |
| Flow rate at time of sample<br>(CFS):      | 1,080                  | Flow rate at time of end of Sampling (CFS): | 1,870                          |
| Average flow rate during sampling (CFS):   | 1,480                  | Max flow rate for the event (CFS):          | 1,940                          |
| Peak occurs during the<br>sampling time?   | No                     |                                             |                                |
| TSS (mg/L):                                | 420                    | Turbidity (NTU):                            | 110                            |
| Oct 04, 2011 11                            |                        |                                             | Sampling Start<br>Sampling End |
| Oct 03 06:01 AM                            | Oct 03 06:01 PM        | Oct 04 06:01 AM Oct                         | 04 06:01 PM                    |
|                                            |                        |                                             |                                |

|                           | Year:                                    | 2011                    |                                             |                              |
|---------------------------|------------------------------------------|-------------------------|---------------------------------------------|------------------------------|
|                           | Sample Location:                         | Las Vegas Wash at Rair  | nbow Gardens                                |                              |
|                           | Date:                                    | 9/13/2011               |                                             |                              |
|                           |                                          | Sample Collection       | on Information                              |                              |
| Time                      | of 1 <sup>st</sup> Sample Collected:     | 1:40 PM                 |                                             |                              |
| Time of                   | of 24th Sample Collected:                | 2:25 PM                 |                                             |                              |
|                           | Sample Intervals:                        | Missing record on sampl | ing interval                                |                              |
| Flow                      | rate at time of sample<br>(CFS):         | 2,150                   | Flow rate at time of end of Sampling (CFS): | 1,870                        |
|                           | rage flow rate during<br>sampling (CFS): | 2,000                   | Max flow rate for the event (CFS):          | 2,190                        |
|                           | Peak occurs during the<br>sampling time? | No                      |                                             |                              |
|                           | TSS (mg/L):                              | 630                     | Turbidity (NTU):                            | 240                          |
| 2000 -<br>1000 -<br>500 - | Sep 13, 2011 11                          | ::45:00 PM PDT          |                                             | ampling Start<br>ampling End |
| 300 -                     |                                          |                         |                                             | •                            |
| 1 🗖                       |                                          | Sep 13 09:01 AM         |                                             |                              |

|                                             | Year:                                    | 2011                    |                                             |                              |
|---------------------------------------------|------------------------------------------|-------------------------|---------------------------------------------|------------------------------|
|                                             | Sample Location:                         | Las Vegas Wash at Raint | pow Gardens                                 |                              |
|                                             | Date:                                    | 7/3/2011                |                                             |                              |
|                                             |                                          | Sample Collection       | n Information                               |                              |
| Time                                        | of 1 <sup>st</sup> Sample Collected:     | 10:30 PM                |                                             |                              |
| Time o                                      | of 24th Sample Collected:                | 12:30 AM                |                                             |                              |
|                                             | Sample Intervals:                        | 5 minutes               |                                             |                              |
| Flow                                        | rate at time of sample<br>(CFS):         | 1,300                   | Flow rate at time of end of Sampling (CFS): | 1,930                        |
|                                             | rage flow rate during<br>sampling (CFS): | 2,080                   | Max flow rate for the event (CFS):          | 2,490                        |
|                                             | Peak occurs during the<br>sampling time? |                         |                                             |                              |
|                                             | TSS (mg/L):                              | 3,800                   | Turbidity (NTU):                            | 260                          |
| 2000 -<br>1000 -<br>500 -<br>300 -<br>200 - | Jul 04, 2011 11:                         | :45:00 PM PDT           |                                             | ampling Start<br>ampling End |
|                                             | Jul 03 06:01 AM                          | Jul 03 06:01 PM         | Jul 04 06:01 AM Jul 0                       | 4 06:01 PM                   |







| Sample Location:       Las Vegas Wash at Rainbow Gardens         Date:       1/19/2010         Sample Collection Information         Time of 1st Sample Collected:       8:05 PM         Time of 24th Sample Collected:       9:05 PM         Sample Intervals:       3 minutes         Flow rate at time of sample<br>(CFS):       655         Average flow rate during<br>sampling (CFS):       665         Peak occurs during the<br>sampling time?       No |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Sample Collection Information         Time of 1 <sup>st</sup> Sample Collected:       8:05 PM         Time of 24 <sup>th</sup> Sample Collected:       9:05 PM         Sample Intervals:       3 minutes         Flow rate at time of sample<br>(CFS):       3 minutes         Average flow rate during<br>sampling (CFS):       655         Peak occurs during the<br>sampling time?       No                                                                  |             |
| Time of 1st Sample Collected:8:05 PMTime of 24th Sample Collected:9:05 PMSample Intervals:3 minutesFlow rate at time of sample<br>(CFS):655Flow rate at time of end of<br>Sampling (CFS):Average flow rate during<br>sampling (CFS):665Max flow rate for the event<br>(CFS):Peak occurs during the<br>sampling time?No                                                                                                                                          |             |
| Time of 24th Sample Collected:       9:05 PM         Sample Intervals:       3 minutes         Flow rate at time of sample (CFS):       655         Average flow rate during sampling (CFS):       665         Peak occurs during the sampling time?       No                                                                                                                                                                                                   |             |
| Sample Intervals:       3 minutes         Flow rate at time of sample (CFS):       655         Average flow rate during sampling (CFS):       665         Peak occurs during the sampling time?       No                                                                                                                                                                                                                                                        |             |
| Flow rate at time of sample (CFS):       655       Flow rate at time of end of Sampling (CFS):         Average flow rate during sampling (CFS):       665       Max flow rate for the event (CFS):         Peak occurs during the sampling time?       No                                                                                                                                                                                                       |             |
| (CFS):655Sampling (CFS):Average flow rate during<br>sampling (CFS):665Max flow rate for the event<br>(CFS):Peak occurs during the<br>sampling time?No                                                                                                                                                                                                                                                                                                           |             |
| Average flow rate during<br>sampling (CFS):     665     (CFS):       Peak occurs during the<br>sampling time?     No                                                                                                                                                                                                                                                                                                                                            | 680         |
| sampling time?                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,720       |
| TSC (mall ) = 540                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| <b>TSS (mg/L)</b> : 540 <b>Turbidity (NTU)</b> : 32                                                                                                                                                                                                                                                                                                                                                                                                             | 20          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oling Start |
| Jan 19 06:01 AM Jan 19 06:01 PM Jan 20 06:01 AM Jan 20 06:01                                                                                                                                                                                                                                                                                                                                                                                                    |             |



